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Abstract

We study efficient distributed algorithms for the fundamental problem of principal
component analysis and leading eigenvector computation on the sphere, when the
data are randomly distributed among a set of computational nodes. We propose a
new quantized variant of Riemannian gradient descent to solve this problem, and
prove that the algorithm converges with high probability under a set of necessary
spherical-convexity properties. We give bounds on the number of bits transmitted by
the algorithm under common initialization schemes, and investigate the dependency
on the problem dimension in each case.

1 Introduction

The need to process ever increasing quantities of data has motivated significant research interest into
efficient distributed algorithms for standard tasks in optimization and data analysis; see, e.g., [16, 27,
11]. In this context, one of the fundamental metrics of interest is communication cost, measured as
the number of bits sent and received by the processors throughout computation. Communication-
efficient variants are known for several classical tasks and algorithms, from basic ones such as mean
estimation [28, 20, 8] to variants of gradient descent [19, 12] or even higher-order optimization [2, 15].

By contrast, much less is known concerning the communication cost for classical problems in data
analysis, such as Principal Component Analysis (PCA) [13, 5], or spectral clustering [23]. In this
paper, we will focus on the closely-related problem of computing the leading eigenvector of the data
covariance matrix, i.e., determining the first principal component, in the setting where d-dimensional
data comes from an unknown distribution, and is split among n machines.

Given the fundamental nature of PCA, there is a rich body of work on solving sequential variants,
both in the Euclidean domain [24, 25, 26] and, more recently, based on Riemannian optimization.
This is because maximizing the Rayleigh quotient can be re-interpreted in terms of a hyper-sphere,
leading to an unconstrained Riemannian optimization problem [1, 32, 31]. These references have
exclusively focused on the sequential setting, where the data can be stored and processed by a single
node. However, in many settings the large volume of data requires processing by multiple nodes,
which has inspired significant work on reducing the distribution overheads of PCA, e.g. [4, 11],
specifically on obtaining efficient algorithms in terms of round complexity.

More precisely, an impressive line of work considered the deterministic setting [17, 4, 6, 10],
where the input is partitioned arbitrarily between machines, for which both round-efficient and
communication-efficient solutions are now known. The general approach is to first perform a careful
low-rank approximation of the local data and then communicate iteratively to reconstruct a faithful
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estimate of the covariance matrix. Due to the worst-case setting, the number of communication
rounds scales polynomially in the eigengap δ and in the precision ε, making them costly in practice.

Thus, on the practical side, it is common to assume a setting with stochastic rather than worst-case
data partitioning. Specifically, Garber et al. [11] consider this setting, and note that standard solutions
based on distributed Power Method or Lanczos would require a number of communication rounds
which increases with the sample size, which is impractical at scale. They circumvent this issue by
replacing explicit Power Method iterations with a set of convex optimization problems, which can
be solved in a round-efficient manner. Huang and Pan [14] proposed a round-efficient solution, by
leveraging the connection to Riemannian optimization. Their proposal relies on a procedure which
allows the update of node-local variables via a surrogate gradient, whose deviation from the global
gradient should be bounded. Thus, communication could only be used to reach consensus on the
local variables among the nodes. Unfortunately, upon close inspection, we have noted significant
technical gaps in their analysis, which we discuss in detail in the next section.

The line of work in the stochastic setting focused primarily on latency cost, i.e., the number of com-
munication rounds for solving this problem. For highly-dimensional data and/or highly-distributed
settings, it is known that bandwidth cost, i.e., the number of bits which need to be transmitted per
round, can be a significant bottleneck, and an important amount of work deals with it for other
classic problems, e.g. [28, 12, 15]. By contrast, much less is known concerning the communication
complexity of distributed PCA.

Contribution. In this paper, we provide a new algorithm for distributed leading eigenvector com-
putation, which specifically minimizes the total number of bits sent and received by the nodes.
Our approach leverages the connection between PCA and Riemannian optimization; specifically,
we propose the first distributed variant of Riemannian gradient descent, which supports quantized
communication. We prove convergence of this algorithm utilizing a set of necessary convexity-type
properties, and bound its communication complexity under different initializations.

At the technical level, our result is based on a new sequential variant of Riemannian gradient descent
on the sphere. This may be of general interest, and the algorithm can be generalized to Riemannian
manifolds of bounded sectional curvatures using more sophisticated geometric bounds. We strengthen
the gradient dominance property proved in [31], by proving that our objective is weakly-quasi-convex
in a ball of some minimizer and combining that with a known quadratic-growth condition. We
leverage these properties by adapting results of [7] in the Riemannian setting and choosing carefully
the learning-rate in order to guarantee convergence for the single-node version.

This algorithm is specifically-designed to be amenable to distribution: specifically, we port it to the
distributed setting, and add communication-compression in the tangent spaces of the sphere, using
a variant of the lattice quantization technique of [8], which we port from the context of standard
gradient descent. We provide a non-trivial analysis for the communication complexity of the resulting
algorithm under different initializations. We show that, under random initialization, a solution can be
reached with total communication that is quadratic in the dimension d, and linear in 1/δ, where δ is
the gap between the two biggest eigenvalues; when the initialization is done to the leading eigenvector
of one of the local covariance matrices, this dependency can be reduced to linear in d.

2 Setting and Related Work

Setting. We assume to be given m total samples coming from some distribution D, organized as a
global m× d data matrix M , which is partitioned row-wise among n processors, with node i being
assigned the matrix Mi, consisting of mi consecutive rows, such that

∑n
i=1mi = m. As is common,

let A := MTM =
∑d
i=1M

T
i Mi be the global covariance matrix, and Ai := MT

i Mi the local
covariance matrix owned by node i. We denote by λ1, λ2, ..., λd the eigenvalues of A in descending
order and by v1, v2, ..., vd the corresponding eigenvectors. Then, it is well-known that, if the gap
δ = λ1 − λ2 between the two leading eigenvalues of A is positive, we can approximate the leading
eigenvector by solving the following empirical risk minimization problem up to accuracy ε:

x? = argminx∈Rd

(
−x

TAx

‖x‖2

)
= argminx∈Rd,‖x‖2=1

(
−xTAx

)
= argminx∈Sd−1

(
−xTAx

)
, (1)

where Sd−1 is the (d− 1)-dimensional sphere.
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We define f : Sd−1 → R, with f(x) = −xTAx and fi : Sd−1 → R, with fi(x) = −xTAix. Since
the inner product is bilinear, we can write the global cost as the sum of the local costs:
f(x) =

∑n
i=1 fi(x).

In our analysis we use notions from the geometry of the sphere, which we recall in Appendix A.

Related Work. As discussed, there has been a significant amount of research on efficient variants of
PCA and related problems [5, 24, 25, 26, 1, 32, 31]. Due to space constraints, we focus on related
work on communication-efficient algorithms. In particular, we discuss the relationship to previous
round-efficient algorithms; to our knowledge, this is the first work to specifically focus on the bit
complexity of this problem in the setting where data is randomly partitioned. More precisely, previous
work on this variant implicitly assumes that algorithms are able to transmit real numbers at unit cost.

The straightforward approach to solve the minimization problem (1) in a distributed setting, where
the data rows are partitioned, would be to use a distributed version of the Power Method, Riemannian
gradient descent (RGD), or the Lanczos algorithm. In order to achieve an ε-approximation of the
minimizer x?, the latter two algorithms require Õ(λ1 log(1/ε)/δ) rounds, where the Õ notation hides
poly-logarithmic factors in d. Distributed Lanczos and accelerated RGD would improve this by an
O(
√
λ1/δ) factor. However, Garber et al. [11] point out that, when δ is small, e.g. δ = Θ(1/

√
Kn),

then unfortunately the number of communication rounds would increase with the sample size, which
renders these algorithms non-scalable.

Standard distributed convex approaches, e.g. [16, 27], do not directly extend to our setting due to
non-convexity and the unit-norm constraint. Garber et al. [11] proposed a variant of the Power Method
called Distributed Shift-and-Invert (DSI) which converges in roughlyO

(√
b

δ
√
n

log2(1/ε) log(1/δ)
)

rounds, where b is a bound on the squared `2-norm of the data. Huang and Pan [14] aimed to improve
the dependency of the algorithm on ε and δ, and proposed an algorithm called Communication-
Efficient Distributed Riemannian Eigensolver (CEDRE). This algorithm is shown to have round
complexity O( b

δ
√
n

log(1/ε)), which does not scale with the sample size for δ = Ω(1/
√
Kn), and

has only logarithmic dependency on the accuracy ε.

Technical issues in [14]. Huang and Pan [14] proposed an interesting approach, which could provide
the most round-efficient distributed algorithm to date. Despite the fact that we find the main idea of
this paper very creative, we have unfortunately identified a significant gap in their analysis, which we
now outline.

Specifically, one of their main results, Theorem 3, uses the local gradient dominance shown in [31];
yet, the application of this result is invalid, as it is done without knowing in advance that the iterates
of the algorithms continue to remain in the ball of initialization. This is compounded by another error
on the constant of gradient dominance (Lemma 2), which we believe is caused by a typo in the last
part of the proof of Theorem 4 in [31]. This typo is unfortunately propagated into their proof. More
precisely, the objective is indeed gradient dominated, but with a constant which vanishes when we
approach the equator, in contrast with the 2/δ which is claimed globally. (We reprove this result
independently in Proposition 4). Thus, starting from a point lying in some ball of the minimizer can
lead to a new point where the objective is more poorly gradient dominated.

This is a non-trivial technical problem which, in the case of gradient descent, can be addressed by a
choice of the learning rate depending on the initialization. Given these issues, we perform a new and
formally-correct analysis for gradient descent based on new convexity properties which guarantee
convergence directly in terms of iterates, and not just function values. We would like however to note
that our focus in this paper is on bit and not round complexity.

3 Step 1: Computing the Leading Eigenvector in One Node

3.1 Convexity-like Properties and Smoothness

We first analyze the case that all the matrices Ai are simultaneously known to all machines. This
practically means that we can run gradient descent in one of the machines (let it be the master), since
we have all the data stored there. All the proofs for this section are in Appendix B.

3



Our problem reads
min
x∈Sd−1

−xTAx

where A = MTM is the global covariance matrix. If δ = λ1 − λ2 > 0, this problem has exactly two
global minima: v1 and −v1. Let x ∈ Sd−1 be an arbitrary point. Then x can be written in the form
x =

∑d
i=1 αivi. Fixing the minimizer v1, we have that a ball in Sd−1 around v1 is of the form

Ba = {x ∈ Sd−1 | α1 ≥ a} = {x ∈ Sd−1 | 〈x, v1〉 ≥ a} (2)

for some a. Without loss of generality, we may assume a > 0 (otherwise, consider the ball around
−v1 to establish convergence to −v1). In this case, the region A as defined in Def. 11 is identical to
Ba and x∗ := v1.

We begin by investigating the convexity properties of the function −xTAx. In particular, we prove
that this function is weakly-quasi-convex (see Def. 13) with constant 2a in the ball Ba. See also
Appendix A for a definition of the Riemannian gradient gradf and the logarithm log.

Proposition 1. The function f(x) = −xTAx satisfies

2a(f(x)− f∗) ≤ 〈gradf(x),− logx(x∗)〉

for any x ∈ Ba with a > 0.

We continue by providing a quadratic growth condition for our cost function, which can also be found
in [30, Lemma 2] in a slightly different form. Here dist is the intrinsic distance in the sphere, that we
also define in Appendix A.

Proposition 2. The function f(x) = −xTAx satisfies

f(x)− f∗ ≥ δ

4
dist2(x, x∗)

for any x ∈ Ba with a > 0.

According to Def. 14, this means that f satisfies quadratic growth with constant µ = δ/2.

Next, we prove that quadratic growth and weak-quasi-convexity imply a “strong-weak-convexity”
property. This is similar to [7, Proposition 3.1].

Proposition 3. A function f : Sd−1 → R which satisfies quadratic growth with constant µ > 0 and
is 2a-weakly-quasi-convex with respect to a minimizer x∗ in a ball of this minimizer, satisfies for any
x in the same ball the inequality

f(x)− f∗ ≤ 1

a
〈gradf(x),− logx(x∗)〉 − µ

2
dist2(x, x∗).

Interestingly, using Proposition 3, we can recover the gradient dominance property proved in [31,
Theorem 4].

Proposition 4. The function f(x) = −xTAx satisfies

‖gradf(x)‖2 ≥ δa2(f(x)− f∗)

for any x ∈ Ba with a > 0.

The proof of Proposition 4 can be done independently based only on Proposition 3 and [7, Lemma
3.2]. This verifies that our results until now are optimal regarding the quality of initialization since
gradient dominance proved in [31] is optimal in that sense (i.e. the inequalities in the proof are tight).

Proposition 5. The function f(x) = −xTAx is geodesically 2λ1-smooth on the sphere.

Thus, the smoothness constant of f , as defined in Def. 12, equals γ = 2λ1. Similarly, let γi denote
the smoothness constant of fi, which equals twice the largest eigenvalue of Ai. In order to estimate γ
in a distributed fashion using only the local data matrices Ai, we shall use the over-approximation
γ ≤ nmaxi=1,...,n γi.
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3.2 Convergence

We now consider Riemannian gradient descent with learning rate η > 0 starting from a point
x(0) ∈ Ba:

x(t+1) = expx(t)(−η gradf(x(t))),

where exp is the exponential map of the sphere, defined in Appendix A.

Using Proposition 3 and a proper choice of η, we can establish a convergence rate for the instrinsic
distance of the iterates to the minimizer.
Proposition 6. An iterate of Riemannian gradient descent for f(x) = −xTAx starting from a point
x(t) ∈ Ba and with step-size η ≤ a/γ where γ ≥ 2λ1, produces a point x(t+1) that satisfies

dist2(x(t+1), x∗) ≤ (1− aµη) dist2(x(t), x∗) for µ = δ/2.

Note that this result implies directly that if our initialization x(0) lies in the ball Ba, the distance of
x(1) to the center x∗ decreases and thus all subsequent iterates continue being in the initialization
ball. This is essential since it guarantees that the convexity-like properties for f continue to hold
during the whole optimization process. The proof of Proposition 6 is in Appendix B.

This result is also valid in a more general setting when applied to an arbitrary f : Sd−1 → R that
is 2a-weakly-quasi convex and γ-smooth, and that satisfies quadratic growth with constant µ. The
Euclidean analogue of this result can be found in [7, Lemma 4.4].

4 Step 2: Computing the Leading Eigenvector in Several Nodes

We now present our version of distributed gradient descent for leading eigenvector computation and
measure its bit complexity until reaching accuracy ε in terms of the intrinsic distance of an iterate
x(T ) from the minimizer x∗ (x∗ is the leading eigenvector closest to the initialization point).

Lattice Quantization. For estimating the Riemannian gradient in a distributed manner with limited
communication, we use a quantization procedure developed in [8]. The original quantization scheme
involves randomness, but we use a deterministic version of it, by picking up the closest point to the
vector that we want to encode. This is similar to the quantization scheme used by [3] and has the
following properties.
Proposition 7. [8, 3] Denoting by b the number of bits that each machine uses to communicate, there
exists a quantization function

Q : Rd−1 × Rd−1 × R+ × R+ → Rd−1,

which, for each w, y > 0, consists of an encoding function encw,y : Rd−1 → {0, 1}b and a decoding
one decw,y : {0, 1}b × Rd−1 → Rd−1, such that, for all x, x′ ∈ Rd−1,

• decw,y(encw,y(x), x′) = Q(x, x′, y, w), if ‖x− x′‖ ≤ y.

• ‖Q(x, x′, y, w)− x‖ ≤ w, if ‖x− x′‖ ≤ y.

• If y/w > 1, the cost of the quantization procedure in number of bits satisfies
b = O((d− 1)log2

(
y
w )
)

= O(dlog
(
y
w )
)
.

In the following, the quantization takes place in the tangent space of each iterate Tx(t)Sd−1, which is
linearly isomorphic to Rd−1. We denote by Qx the specification of the function Q at TxSd−1. The
vector inputs of the function Qx are represented in the local coordinate system of the tangent space
that the quantization takes place at each step. For decoding at t > 0, we use information obtained
in the previous step, that we need to translate to the same tangent space. We do that using parallel
transport Γ, which we define in Appendix A.

Algorithm

We present now our main algorithm, which is inspired by quantized gradient descent firstly designed
by [22], and its similar version in [3].

5



1. Choose an arbitrary machine to be the master node, let it be i0.

2. Choose x(0) ∈ Sd−1 (we analyze later specific ways to do that).
3. Consider the following parameters

σ := 1− cos(D)µη, K :=
2√
σ
, θ :=

√
σ(1−

√
σ)

4
,√

ξ := θK +
√
σ, R(t) = γK(

√
ξ)tD

where D is an over-approximation for dist(x(0), x∗) (the way to practically choose D is
discussed later).
We assume that cos(D)µη ≤ 1

2 , otherwise we run the algorithm with σ = 1
2 .

In Tx(0)Sd−1:

4. Compute the local Riemannian gradient gradfi(x(0)) at x(0) in each node.

5. Encode gradfi(x(0)) in each node and decode in the master node using its local information:

q
(0)
i = Qx(0)

(
gradfi(x(0)), gradfi0(x(0)), 2γπ,

θR(0)

2n

)
.

6. Sum the decoded vectors in the master node:

r(0) =

n∑
i=1

gradfi(x(0)).

7. Encode the sum in the master and decode in each machine i using its local information:

q(0) = Qx(0)

(
r(0), gradfi(x(0)),

θR(0)

2
+ 2γπ,

θR(0)

2

)
.

For t ≥ 0:
8. Take a gradient step using the exponential map:

x(t+1) = expx(t)(−ηq(t))
with step-size η (the step-size is discussed later).
In Tx(t+1)Sd−1:

9. Compute the local Riemannian gradient gradfi(x(t+1)) at x(t+1) in each node.

10. Encode gradfi(x(t+1)) in each node and decode in the master node using its (parallelly
transported) local information from the previous step:

q
(t+1)
i = Qx(t+1)

(
gradfi(x(t+1)),Γx

(t+1)

x(t) q
(t)
i ,

R(t+1)

n
,
θR(t+1)

2n

)
.

11. Sum the decoded vectors in the master node:

r(t+1) =

n∑
i=1

gradfi(x(t+1)).

12. Encode the sum in the master and decode in each machine using its local information in the
previous step after parallel transport:

q(t+1) = Qx(t+1)

(
r(t+1),Γx

(t+1)

x(t) q(t),

(
1 +

θ

2

)
R(t+1),

θR(t+1)

2

)
.

Convergence We first control the convergence of iterates simultaneously with the convergence of
quantized gradients.

Note that √
ξ =

1−
√
σ

2
+
√
σ =

1 +
√
σ

2
≤
√

2
√

1 + σ

2
=

√
1 + σ

2
.
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Lemma 8. If η ≤ cos(D)
γ , the previous quantized gradient descent algorithm produces iterates x(t)

and quantized gradients q(t) that satisfy

dist2(x(t), x∗) ≤ ξtD2, ‖q(t)i − gradfi(x(t))‖ ≤
θR(t)

2n
, ‖q(t) − gradf(x(t))‖ ≤ θR(t).

The proof is a Riemannian adaptation of the similar one in [22] and [3] and is presented in Appendix C.
We recall that since the sphere is positively curved, it provides a landscape easier for optimization. It
is quite direct to derive a general Riemannian method for manifolds of bounded curvature using more
advanced geometric bounds, however this exceeds the scope of this work which focuses on leading
eigenvector computation.

We now move to our main complexity result.

Theorem 9. Let η ≤ cos(D)
γ . Then, the previous quantized gradient descent algorithm needs at most

b = O
(
nd

1

cos(D)δη
log

(
n

cos(D)δη

)
log

(
D

ε

))
bits in total to estimate the leading eigenvector with an accuracy ε measured in intrinsic distance.

The proof is based on the previous Lemma 8 in order to count the number of steps that the algorithm
needs to estimate the minimizer with accuracy ε and Proposition 7 to count the quantization cost in
each round. We present the proof again in Appendix C.

5 Step 3: Dependence on Initialization

5.1 Uniformly random initialization

The cheapest choice to initialize quantized gradient descent is a point in the sphere chosen uniformly
at random. According to Theorem 4 in [31], such a random point x(0) will lie, with probability at
least 1− p, in a ball Ba (see Def. 2) where

a ≥ c p√
d
⇐⇒ dist(x(0), x∗) ≤ arccos

(
c
p√
d

)
. (3)

Here, c is a universal constant (we estimated numerically that c is lower bounded by 1, see Appendix D,
thus we can use c = 1). By choosing the step-size η as

η =
cp√
dγ

and the parameter D as

D = arccos

(
c
p√
d

)
,

we are guaranteed that η = cos(D)
γ , and dist(x(0), x∗) ≤ D with probability at least 1 − p. Our

analysis above therefore applies (up to probability 1− p) and the general communication complexity
result becomes

O
(

nd

cos(D)δη
log

n

cos(D)δη
log

D

ε

)
= O

(
nd

ηγδη
log

n

ηγδη
log

D

ε

)
= O

(
nd

η2γδ
log

n

η2γδ
log

D

ε

)
.

Substituting η2 = p2c2

dγ2 , the number of bits satisfies (up to probability 1− p) the upper bound

b = O
(
n
d2

p2
γ

δ
log

ndγ

pδ
log

D

ε

)
= Õ

(
n
d2

p2
γ

δ

)
.
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5.2 Warm Start

A reasonable strategy to get a more accurate initialization is to perform an eigenvalue decomposition
to one of the local covariance matrices, for instance Ai0 (in the master node i0), and compute its
leading eigenvector, let it be vi0 . Then we communicate this vector to all machines in order to use its
quantized approximation x(0) as initialization. We define:

x̃(0) = Q

(
vi0 , vi, ‖vi0 − vi‖, 〈v

i0 , x∗〉
2(
√

2 + 2)

)
x(0) =

x̃(0)

‖x̃(0)‖
where Q is the lattice quantization scheme in Rd (i.e. we quantize the leading eigenvector of the
master node as a vector in Rd and then project back to the sphere). The input and output variance in
this quantization can be bounded by constants that we can practically estimate (see Appendix D).
Proposition 10. Assume that our data are i.i.d. and sampled from a distribution D bounded in `2
norm by a constant h. Given that the eigengap δ and the number of machines n satisfy

δ ≥ Ω

(
√
n

√
log

d

p

)
, (4)

we have that the previous quantization costs O(nd) many bits and 〈x(0), x∗〉 is lower bounded by a
constant with probability at least 1− p.

Thus, if bound 4 is satisfied, then the communication complexity becomes

b = O
(
nd
γ

δ
log

nγ

δ
log

D

ε

)
= Õ

(
nd
γ

δ

)

many bits in total with probability at least 1− p (notice that this can be further simplified using bound
4). This is because D in Theorem 9 is upper bounded by a constant and the communication cost of
quantizing vi0 does not affect the total communication cost. If we can estimate the specific relation
in bound 4 (the constant hidden inside Ω), then we can compute estimations of the quantization
parameters in the definition of x(0).

Condition 4 is quite typical in this literature; see [14] and references therein (beginning of page 2), as
we also briefly discussed in the introduction. Notice that

√
n appears in the numerator and not the

denominator, only because we deal with the sum of local covariance matrices and not the average,
thus our eigengap is n times larger than the eigengap of the normalized covariance matrix.

6 Experiments

We evaluate our approach experimentally, comparing the proposed method of Riemannian gradient
quantization against three other benchmark methods:

• Full-precision Riemannian gradient descent: Riemannian gradient descent, as described in
Section 3.2, is performed with the vectors communicated at full (64-bit) precision.

• Euclidean gradient difference quantization: the ‘naïve’ approach to quantizing Riemannian
gradient descent. Euclidean gradients are quantized and averaged before being projected
to Riemannian gradients and used to take a step. To improve performance, rather than
quantizing Euclidean gradients directly, we quantize the difference between the current local
gradient and the previous local gradient, at each node. Since these differences are generally
smaller than the gradients themselves, we expect this quantization to introduce lower error.

• Quantized power iteration: we also use as a benchmark a quantized version of power
iteration, a common method for leading-eigenvector computation given by the update rule
x(t+1) ← Ax(t)

‖Ax(t)‖ . Ax(t) can be computed in distributed fashion by communicating and

summing the vectors Aix(t), i ≤ n. It is these vectors that we quantize.

8



All three of the quantized methods use the same vector quantization routine, for fair comparison.

Figure 1 Convergence results on real datasets

We show convergence results (Figure 1) for the methods on four real datasets: Human Activity from
the MATLAB Statistics and Machine Learning Toolbox, and Mice Protein Expression, Spambase,
and Libras Movement from the UCI Machine Learning Repository [9]. All results are averages over
10 runs of the cost function −xTAx (for each method, the iterates x are normalized to lie in the
1-ball, so a lower value of −xTAx corresponds to being closer to the principal eigenvector).

All four datasets display similar behavior: our approach of Riemannian gradient quantization out-
performs naïve Euclidean gradient quantization, and essentially matches the performance of the
full-precision method while communicating only 4 bits per coordinate, for a 16× compression. Power
iteration converges slightly faster (as would be expected from the theoretical convergence guarantees),
but is much more adversely affected by quantization, and reaches a significantly suboptimal result.

We also tested other compression levels, though we do not present figures here due to space constraints:
for fewer bits per coordinate (1-3), the performance differences between the four methods are in the
same order but more pronounced; however, their convergence curves become more erratic due to
increased variance from quantization. For increased number of bits per coordinate, the performance of
the quantized methods reaches that of the full-precision methods at between 8-10 bits per coordinate
depending on input, and the observed effect of quantized power iteration converging to a suboptimal
result gradually diminishes. Our code is publicly available 1.

7 Discussion and Future Work

We proposed a communication efficient algorithm to compute the leading eigenvector of a covariance
data matrix in a distributed fashion using only limited amount of bits. To the best of our knowledge,
this is the first algorithm for this problem with bounded bit complexity. We focused on gradient
descent since it provides robust convergence in terms of iterates, and can circumvent issues that arise
due to a cost function that only has local convexity-like properties; second, it known to be amenable
to quantization.

We would like briefly to discuss the round complexity of our method, emphasizing inherent round
complexity trade-offs due to quantization. Indeed, the round complexity of our quantized RGD algo-

1https://github.com/IST-DASLab/QRGD
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rithm for accuracy ε is Õ( γ
a2δ ), where ε appears inside a logarithm. Specifically, if the initialization

x(0) is uniformly random in the sphere (section 5.1), then a = O(1/
√
d) . If we have warm start

(section 5.2), then a = O(1). Both statements hold with high probability.

For random initialization, the round complexity of distributed power method is Õ(λ1

δ ) = Õ(γδ )
(see the table at the beginning of page 4 in [11]). This is because the convergence rate of power
method is tan(dist(xk, x∗)) ≤ (1 − λ1/δ)k tan(dist(x0, x∗)). The dimension is again present in
that rate, because tan(dist(x0, x∗)) = Θ(

√
d), but it appears inside a logarithm in the final iteration

complexity.

Since we want to insert quantization, the standard way to do so is by starting from a rate which is
contracting (see e.g. [22]). It may in theory be possible to add quantization in a non-contracting
algorithm, but we are unaware of such a technique. Thus, we firstly prove that RGD with step-size
a
γ is contracting (based on weak-convexity and quadratic growth) and then we add quantization,
paying the price of having an extra O(1/a2) = O(d) in our round complexity. Thus, our round
complexity is slightly worse than distributed power method, but this is in some sense inherent due to
the introduction of quantization. Despite this, our algorithm can achieve low bit complexity and it is
more robust in perturbations caused by bit limitations, as our experiments suggest.

We conclude with some interesting points for future work.

First, our choice of step-size is quite conservative since the local convexity properties of the cost
function improve when approaching the optimum. Thus, instead of setting the step-size to be
η = a/γ, where a is a lower bound for 〈x(0), x∗〉, we can re-run the whole analysis with an adaptive
step-size η = 〈x(t), x∗〉/γ based on an improved value for a from 〈x(t), x∗〉. This should improve
the dependency on the dimension of our complexity results.

Second, the version of Riemannian gradient descent that we have chosen is expensive, since one needs
to calculate the exponential map in each step using sin and cos calculations. Practitioners usually
use cheaper retraction-based versions, and it would be of interest to study how our analysis can be
modified if the exponential map is substituted by a retraction (i.e., any first-order approximation).

Third, it would be interesting to see whether the ideas and techniques presented in this work can also
be used for other data science problems in a distributed fashion through communication-efficient
Riemannian methods. This could be, for example, PCA for the top k eigenvectors using optimiza-
tion on the Stiefel or Grassmann manifold [1] and low-rank matrix completion on the fixed-rank
manifold [29].
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A Geometry of the Sphere

We analyze here briefly some basic notions of the geometry of the sphere that we use in our algorithm
and convergence analysis. We refer the reader to [1, p. 73–76] for a more comprehensive presentation.

Tangent Space: The tangent space of the r-dimensional sphere Sr at a point p is an r-dimensional
vector space, which generalizes the notion of tangent plane in two dimensions. We denote it by TpSr
and a vector v belongs in it, if and only if, it can be written as α̇(0), where α : (−ε, ε) → Sr (for
some ε > 0) is a smooth curve with α(0) = p. The tangent space at p can be given also in an explicit
way, as the set of all vectors in Rr+1 orthogonal to p with respect to the usual inner product. Given
a vector w ∈ Rr+1, we can always project it orthogonally in any tangent space of Sr. Taking all
vectors to be column vectors, the orthogonal projection in TpSr satisfies

Pp(w) = (I − ppT )w.

Geodesics: Geodesics on high-dimensional surfaces are defined to be locally length-minimizing
curves. On the d-dimensional sphere, they coincide with great circles. These can be computed
explicitly and give rise to the exponential and logarithmic maps. The exponential map at a point p is
defined as expp : TpSr → Sr with expp(v) = c(1), with c being the (unique) geodesic (i.e., length
minimizing part of great circle) satisfying c(0) = p and ċ(0) = v. Defining the exponential map in
this way makes it invertible with inverse logp. The exponential and logarithmic map are given by
well-known explicit formulas:

expp(v) = cos(‖v‖)p+ sin(‖v‖) v

‖v‖
, logp(q) = arccos(〈q, p〉) Pp(q − p)

‖Pp(q − p)‖
. (5)

The distance between points p and q measured intrinsically on the sphere is

dist(p, q) = ‖ logp(q)‖ = arccos(〈q, p〉). (6)

Notice that 〈q, p〉 = ‖q‖‖p‖ cos(∠(p, q)) = cos(∠(p, q)), thus the distance of p and q is actually the
angle between them.

The inner product inherited by the ambient Euclidean space Rr+1 provides a way to transport vectors
from a tangent space to another one, parallelly to the geodesics. This operation is called parallel
transport and constitutes an orthogonal isomorphism between the two tangent spaces. We denote Γqp
for the parallel transport from TpM to TqM along the geodesic connecting p and q. If q = expp(tv),
then parallel transport is given by the formula

Γqpu =

(
Id + cos(t‖v‖ − 1)

vvT

‖v‖2
− sin(t‖v‖) pv

t

‖v‖

)
u.

Riemannian Gradient: Given a function f : Sr → R, we can define its differential at a point p in a
tangent direction v ∈ TpSr as

df(p)v = lim
t→0

f(α(t))− f(p)

t
,

where α : (−ε, ε) → Sr is a smooth curve defined such that α(0) = p and α̇(0) = v. Using this
intrinsically defined Riemannian differential, we can define the Riemannian gradient at p as a vector
gradf(p) ∈ TpSr, such that

〈gradf(p), v〉 = df(p)v,

for any v ∈ TpSr. In the case of the sphere, we can also compute the Riemannian gradient by
orthogonally projecting the Euclidean gradient∇f(p) computed in the ambient space into the tangent
space of p:

gradf(p) = Pp(∇f(p)).

Geodesic Convexity and Smoothness: In this paragraph we define convexity-like properties in the
context of the sphere, which we employ in our analysis.

Definition 11. A subset A ⊆ Sr is called geodesically uniquely convex, if every two points in A are
connected by a unique geodesic.
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Open hemispheres satisfy this definition, thus they are geodesically uniquely convex. Actually, they
are the biggest possible subsets of the sphere with this property.
Definition 12. A smooth function f : A → R is called geodesically γ-smooth if

‖gradf(p)− Γpqgradf(q)‖ ≤ γ dist(p, q)

for any p, q ∈ A.

Definition 13. A smooth function f : A → R defined in a geodesically uniquely convex subset
A ⊂ Sr is called geodesically a-weakly-quasi-convex (for some a > 0) with respect to a point p ∈ A
if

a(f(x)− f(p)) ≤ 〈gradf(x),− logx(p)〉 for all x ∈ A.

Observe that weak-quasi-convexity implies that any local minimum of f lying in the interior of A is
also a global one.
Definition 14. A function f : A → R is said to satisfy quadratic growth condition with constant µ, if

f(x)− f∗ ≥ µ

2
dist2(x, x∗) for all x ∈ A,

where f∗ is the minimum of f and x∗ the global minimizer of f closest to x.

Quadratic growth condition is slightly weaker than the so-called gradient dominance one:
Definition 15. A function f : A → R is said to be µ-gradient dominated if

f(x)− f∗ ≤ 1

2µ
‖gradf(x)‖2 for all x ∈ A.

Gradient dominance with constant µ implies quadratic growth with the same constant. The proof can
be done by a direct Riemannian adaptation of the argument from [18, p. 13–14].

Tangent Space Distortion: The only non-trivial geometric result we use in this work is that the
geodesics of the sphere spread more slowly than in a flat space. This is a direct application of the
Rauch comparison theorem since the sphere has constant positive curvature.
Proposition 16. Let ∆abc a geodesic triangle on the sphere. Then we have

dist(a, b) ≤ ‖ logc(a)− logc(b)‖.

Notice that in Euclidean space we have equality in this bound.

B Properties of the Cost and Convergence of Single-Node Gradient Descent

In this appendix, we will prove the convergence of Riemannian gradient descent applied to

min
x∈Sd−1

f(x) with f(x) = −xTAx

and A ∈ Rd×d a symmetric and positive definite matrix. In the following, we will denote the
eigenvalues of A by λ1 > λ2 ≥ · · · ≥ λd > 0 and their corresponding orthonormal eigenvectors by
v1, v2, . . . , vd. Denote the spectral gap by δ = λ1 − λ2 > 0.

Let f∗ = −λ1 denote the minimum of f on Sd−1 which is attained at x∗ = v1.
Proposition 1. The function f(x) = −xTAx satisfies

2a(f(x)− f∗) ≤ 〈gradf(x),− logx(x∗)〉

for any x ∈ Ba with a > 0.

Proof. For any x ∈ Ba, we can write

x =

d∑
i=1

αivi, Ax =

d∑
i=1

λiαivi (7)
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for some scalars αi. Recall that α1 ≥ a > 0 by definition (2) of Ba.

With the orthogonal projector Px = I − xxT onto the tangent space TxSd−1, we get from (5) that

〈gradf(x),− logx(x∗)〉 = 〈Px∇f(x),
dist(x, x∗)
‖Px(x− x∗)‖

Px(x− x∗)〉

=
dist(x, x∗)
‖Px(x− x∗)‖

〈Px∇f(x), x− x∗〉.

because P 2
x = Px.

Direct calculation now gives

〈Px∇f(x), x− x∗〉 = −2xTAx+ 2〈Ax, x∗〉 − 2f(x)‖x‖2 + 2f(x)〈x, x∗〉
= 2f(x) + 2λ1α1 − 2f(x) + 2f(x)α1

= 2α1(f(x) + λ1) = 2α1(f(x)− f∗) ≥ 0.

It is easy to verify that dist(x, x∗) ≥ ‖Px(x− x∗)‖. We thus obtain

〈gradf(x),− logx(x∗)〉 ≥ 2α1(f(x)− f∗),
which gives the desired result since α1 ≥ a.

Proposition 2. The function f(x) = −xTAx satisfies

f(x)− f∗ ≥ δ

4
dist2(x, x∗)

for any x ∈ Ba with a > 0.

Proof. The proof follows the one in [30, Lemma 2]. Using the expansions in (7), we get

xTAx =

d∑
i=1

λiα
2
i = λ1α

2
1 +

d∑
i=2

λiα
2
i ≤ λ1α2

1 + λ2(1− α2
1)

since ‖x‖2 = 1 =
∑d
i=1 α

2
i . From (6), we have that α1 = cos(dist(x, x∗)) and so

xTAx ≤ λ1 cos2(dist(x, x∗)) + λ2 sin2(dist(x, x∗)).

Direct calculation now shows

f(x)− f∗ = −xTAx+ λ1 ≥ λ1 − λ1 cos2(dist(x, x∗))− λ2 sin2(dist(x, x∗))

= λ1 sin2 dist(x, x∗))− λ2 sin2(dist(x, x∗)) = δ sin2(dist(x, x∗)).

Since x ∈ Ba with a > 0, we have that x and x∗ are in the same hemisphere and thus d =
dist(x, x∗) ≤ π/2. The desired result follows using sin(φ) ≥ φ/2 for 0 ≤ φ ≤ π/2.

Proposition 3. A function f : Sd−1 → R which satisfies quadratic growth with constant µ > 0 and
is 2a-weakly-quasi-convex with respect to a minimizer x∗ in a ball of this minimizer, satisfies for any
x in the same ball the inequality

f(x)− f∗ ≤ 1

a
〈gradf(x),− logx(x∗)〉 − µ

2
dist2(x, x∗).

Proof. From quadratic growth and weak-quasi-convexity, we have

µ

2
dist2(x, x∗) ≤ f(x)− f∗ ≤ 1

2a
〈gradf(x),− logx(x∗)〉.

Now, again by weak-quasi-convexity

f(x)− f∗ ≤ 1

2a
〈gradf(x),− logx(x∗)〉+

µ

2
dist2(x, x∗)− µ

2
dist2(x, x∗)

≤ 1

a
〈gradf(x),− logx(x∗)〉 − µ

2
dist2(x, x∗)

by substituting the previous inequality.
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Proposition 4. The function f(x) = −xTAx satisfies

‖gradf(x)‖2 ≥ δa2(f(x)− f∗)

for any x ∈ Ba with a > 0.

Proof. By Proposition 3, we have

f(x)− f∗ ≤ 1

a
〈gradf(x),− logx(x∗)〉 − δ

4
dist2(x, x∗)

since, in our case, µ = δ/2. Using 〈x, y〉 ≤ 1
2 (‖x‖2 + ‖y‖2) for all x, y ∈ Rd, we can write for any

positive ρ that

〈gradf(x),− logx(x∗)〉 ≤ ρ

2
‖gradf(x)‖2 +

1

2ρ
‖ logx(x∗)‖2.

Combining with ρ = 2
aδ and using (6), we get

f(x)− f∗ ≤ 1

a

1

aδ
‖gradf(x)‖2 +

1

a

aδ

4
dist2(x, x∗)− δ

4
dist2(x, x∗) =

1

a2δ
‖gradf(x)‖2.

Proposition 5. The function f(x) = −xTAx is geodesically 2λ1-smooth on the sphere.

Proof. The proof can be found also in [14, Lemma 1]. For p ∈ Sd−1 and v ∈ TpSd−1 with ‖v‖ = 1,
we have that the Riemannian Hessian of f satisfies

〈v,∇2f(p)v〉 = 〈v,−(I − ppT )2Av + pT 2Apv〉 = −2vTAv + 2pTAp ≤ 2λ1

because vTAv ≥ 0 (since A is symmetric and positive semi-definite) and pTAp ≤ λ1, by the
definition of eigenvalues and ‖p‖ = 1. We have also used that ‖v‖ = 1 and 〈p, v〉 = 0. Notice
now that the largest eigenvalue of the Hessian is the maximum of 〈v,∇2f(p)v〉 over all v ∈ TpSr
with ‖v‖ = 1, thus less or equal than 2λ1. This result easily implies Def. 12, since the Riemannian
Hessian is the covariant derivative of the Riemannian gradient.

Proposition 6. An iterate of Riemannian gradient descent for f(x) = −xTAx starting from a point
x(t) ∈ Ba and with step-size η ≤ a/γ where γ ≥ 2λ1, produces a point x(t+1) that satisfies

dist2(x(t+1), x∗) ≤ (1− aµη) dist2(x(t), x∗) for µ = δ/2.

Proof. By definition of x(t+1), we have logx(t)(x(t+1)) = −η gradf(x(t)). Applying Proposition 16,
we can thus write

dist2(x(t+1), x∗) ≤ ‖ − η gradf(x(t))− logx(t)(x∗)‖2

= η2‖gradf(x(t))‖2 + ‖logx(t)(x∗)‖2 + 2η〈gradf(x(t)), logx(t)(x∗)〉.

By Proposition 3 and 5, we have

1

a
〈gradf(x(t)), logx(t)(x∗)〉 ≤ f∗ − f(x(t))− µ

2
dist2(x(t), x∗)

≤ − 1

2γ
‖gradf(x(t))‖2 − µ

2
dist2(x(t), x∗).

Multiplying with 2ηa and using η ≤ a/γ, we get

2η〈gradf(x(t)), logx(t)(x∗)〉 ≤ −
ηa

γ
‖gradf(x(t))‖2 − µηa dist2(x(t), x∗)

≤ −η2‖gradf(x(t))‖2 − µηa dist2(x(t), x∗).

Substituting to the first inequality, we get the desired result.
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C Convergence of Distributed Gradient Descent on the Sphere

Lemma 8. If η ≤ cos(D)
γ , the previous quantized gradient descent algorithm produces iterates x(t)

and quantized gradients q(t) that satisfy

dist2(x(t), x∗) ≤ ξtD2, ‖q(t)i − gradfi(x(t))‖ ≤
θR(t)

2n
, ‖q(t) − gradf(x(t))‖ ≤ θR(t).

Proof. We do the proof by induction. We start from the case that t = 0. The first inequality is direct
by the definition of D.

For the second one we have

‖gradfi(x(0))− gradfi0(x(0))‖ ≤ ‖gradfi(x(0))‖+ ‖gradfi0(x(0))‖ ≤ 2γπ

and by the definition of quantization, we get

‖gradfi(x(0))− q(0)i ‖ ≤
θR(0)

2n
.

Similarly for the third one, we have

‖gradf(x(0))− r(0)‖ ≤
n∑
i=1

‖gradfi(x(0))− q(0)i ‖ ≤
θR(0)

2
.

Then,

‖r(0) − gradfi(x(0))‖ ≤ ‖r(0) − gradf(x(0))‖+ ‖gradf(x(0))− gradfi(x(0))‖ ≤
θR(0)

2
+ 2πγ.

By the definition of the quantization, we have

‖q(0) − gradf(x(0))‖ ≤ θR(0)

2
≤ θR(0).

We assume now that the inequalities hold for t and we wish to prove that they continue to hold for
t+ 1.

We start with the first one and denote by x̃(t+1) the iteration of exact gradient descent starting from
x(t). Since dist(x(t), x∗) ≤ D, we have that x(t) ∈ Ba with a = cos(D).

We have

dist(x(t+1), x∗) ≤ dist(x(t+1), x̃(t+1)) + dist(x̃(t+1), x∗) ≤ ‖ηgradf(x(t))− ηq(t)‖+
√
σdist(x(t), x∗).

We have the last inequality, because dist(x̃(t+1), x∗) ≤
√
σdist(x(t), x∗) by Proposition 6 and

dist(x(t+1), x̃(t+1)) ≤ ‖ logx(t)(x(t+1))− logx(t)(x̃(t+1))‖ = ‖ηgradf(x(t))−ηq(t)‖ by Proposition
16.

Thus

dist(x(t+1), x∗) ≤ a

γ
θR(t) +

√
σ(
√
ξ)tD ≤ θK(

√
ξ)tD +

√
σ(
√
ξ)tD ≤ (θK +

√
σ)(
√
ξ)tD ≤ (

√
ξ)t+1D

which concludes the induction for the first inequality.

For the second inequality, we have

‖gradfi(x(t+1))− Γx
(t+1)

x(t) q
(t)
i ‖ ≤ ‖gradfi(x(t+1))− Γx

(t+1)

x(t) gradfi(x(t))‖+ ‖Γx
(t+1)

x(t) gradfi(x(t))− Γx
(t+1)

x(t) q
(t)
i ‖

≤ γidist(x(t+1), x(t)) + ‖gradfi(x(t))− q(t)i ‖

≤ 2
γ

n
(
√
ξ)tD + θ

R(t)

n
= 2

γ

n
(
√
ξ)tD + θγK(

√
ξ)tD/n

= (2/K + θ)Kγ(
√
ξ)tD/n ≤ (

√
σ + θK)Kγ(

√
ξ)tD/n =

R(t+1)

n
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and by the definition of the quantization scheme, we have

‖gradfi(x(t+1))− q(t+1)
i ‖ ≤ θR(t+1)

2n
.

For the third inequality, we have

‖r(t+1) − gradf(x(t+1))‖ ≤
n∑
i=1

‖q(t+1)
i − gradfi(x(t+1))‖ ≤ θR(t+1)

2

and

‖r(t+1) − Γx
(t+1)

x(t) q(t)‖ ≤ ‖r(t+1) − gradf(x(t+1))‖+ ‖gradf(x(t+1))− Γx
(t+1)

x(t) gradf(x(t))‖

+ ‖Γx
(t+1)

x(t) gradf(x(t))− Γx
(t+1)

x(t) q(t)‖

≤ θR(t+1)

2
+ γdist(x(t+1), x(t)) + θR(t)

≤ θR(t+1)

2
+R(t+1) =

(
1 +

θ

2

)
R(t+1)

by using again the argument for deriving the second inequality. The last inequality implies that

‖gradf(x(t+1))− q(t+1)‖ ≤ θR(t+1)

2

by the definition of quantization. Summing the two last inequalities completes the induction.

Theorem 9. Let η ≤ cos(D)
γ . Then, the previous quantized gradient descent algorithm needs at most

b = O
(
nd

1

cos(D)δη
log

(
n

cos(D)δη

)
log

(
D

ε

))
bits in total to estimate the leading eigenvector with an accuracy ε measured in intrinsic distance.

Proof. For computing the cost of quantization at each step, we use Proposition 7.

The communication cost of encoding each gradfi at t = 0

O

(
d log

2γπ
θR(0)

2n

)
= O

(
d log

4nγπ

θγKπ

)
≤ O

(
d log

2n

θ

)
.

Now we use that σ ≥ 1
2 and have

1

θ
=

4√
σ(1−

√
σ)
≤ 12

1− σ
=

12

cos(D)ηµ
.

Thus, the previous cost becomes

O

(
d log

2γπ
θR(0)

2n

)
= O

(
d log

n

cos(D)ηµ

)
.

The communication cost of deconding each q(0)i in the master node is

O

(
d log

2γπ + θR(0)

2
θR(0)

2

)
≤ O

(
d log

2γπ
θR(0)

2

)
= O

(
d log

1

cos(D)ηµ

)
.

This is because 2γπ ≥ θR(0)

2 .

Thus, the total communication cost at t = 0 is

O
(
nd log

n

cos(D)ηµ

)
.
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For t > 0, the cost of encoding gradfi’s is

O
(
nd log

R(t+1)/n

θR(t+1)/2n

)
= O

(
nd log

2

θ

)
= O

(
nd log

1

cos(D)ηµ

)
.

as before.

The cost of decoding in the master node is

O
(
nd log

(1 + θ/2)R(t+1)

θR(t+1)/2

)
= O

(
nd log

1

θ

)
= O

(
nd log

1

cos(D)ηµ

)
.

because θ/2 ≤ 1.

Thus, the cost in each round of communication is in general bounded by

O
(
nd log

(1 + θ/2)R(t+1)

θR(t+1)/2

)
= O

(
nd log

n

cos(D)ηµ

)
.

Our algorithm reaches accuracy a in function values if

dist(x(t), x∗) ≤ ε.

We can now write

dist2(x(t), x∗) ≤ ξtD2 ≤ e−(1−ξ)tD2.

Thus, we need to run our algorithm for

O
(

1

1− ξ
log

D

ε

)
≤ O

(
1

cos(D)µη
log

D

ε

)
many iterates to reach accuracy a.

The total communication cost for doing that is

O
(

1

cos(D)µη
log

D

ε
nd log

n

cos(D)ηµ

)
= O

(
nd

1

cos(D)µη
log

n

cos(D)µη
log

D

ε

)
Substituting

µ =
δ

2
by Proposition 2, we get

O
(
nd

1

cos(D)δη
log

n

cos(D)δη
log

D

ε

)
many bits in total.

D Initialization

D.1 Uniformly Random Initialization

We estimate numerically the constant c that is used in (3) of Section 5.1.

Let x(0) be chosen from a uniform distribution on the sphere Sd−1. We are interested in α1 = vT1 x
(0)

for some fixed v1 ∈ Sd−1. By spherical symmetry, α1 is distributed in the same way as the first
component of x(0). Let Ad(h) be the surface of the hyperspherical cap of Sd−1 with height h ∈ [0, 1].
Then it is obvious that

P(|α1| ≥ a) = Ad(1− a)/Ad(1) = I1−a2(d−12 , 12 ),

where we used the well-known formula forAd(h) in terms of the regularized incomplete Beta function
Ix(a, b); see, e.g., [21]. Solving the above expression2 for a when it equals a given probability 1− p,

2This can be conveniently done using https://docs.scipy.org/doc/scipy/reference/generated/
scipy.special.betaincinv.html
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we can calculate the interval [−1,−a]∪ [a, 1] in which α1 will lie for a random x(0) up to probability
1− p.

In the figure below, we have plotted these values of a divided by p/
√
d for p =

10−1, 10−2, 10−3, 10−4. Numerically, there is strong evidence that a ≥ cp/
√
d with c = 1.25.

101 102 103 104 105
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ra
tio

 a
/(p

/
d

)

D.2 Initialization in the Leading Eigenvector of the Master

Proposition 10. Assume that our data are i.i.d. and sampled from a distribution D bounded in `2
norm by a constant h. Given that the eigengap δ and the number of machines n satisfy

δ ≥ Ω

(
√
n

√
log

d

p

)
, (4)

we have that the previous quantization costs O(nd) many bits and 〈x(0), x∗〉 is lower bounded by a
constant with probability at least 1− p.

Proof. By Lemma 3 in [14] we have that∥∥∥∥∥Ai0 − 1

n

n∑
i=1

Ai

∥∥∥∥∥
2

≤
32 log

(
d
p

)
h2

n

which implies that ∥∥∥∥∥nAi0 −
n∑
i=1

Ai

∥∥∥∥∥
2

≤ 32n log

(
d

p

)
h2

with probability at least 1− p. Of course
∑n
i=1Ai = A.

From this bound we can derive a bound for the distance between the eigenvectors of the two matrices.
Indeed, using Lemmas 5 and 8 in [14], we can derive

1− 〈vi0 , x∗〉 ≤

√
128n log

(
d
p

)
h

δ

and

〈vi0 , x∗〉 ≥ 1−

√
128n log

(
d
p

)
h

δ
with probability at least 1 − p (note that the leading eigenvector of Ai0 is equal to the leading
eigenvector nAi0 ). This is because 〈vi0 , x∗〉 ≤ 1, which implies that 〈vi0 , x∗〉2 ≤ 〈vi0 , x∗〉.
We notice that the squared distance of vi0 and x∗ is

‖vi0 − x∗‖2 = ‖vi0‖2 + ‖x∗‖2 − 2〈vi0 , x∗〉 = 2(1− 〈vi0 , x∗〉) ≤ 2

√
128n log

(
d
p

)
h

δ
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which is upper bounded by a constant by Assumption 4. The same holds for ‖vi − x∗‖, thus, by
triangle inequality we have an upper bound on ‖vi0 − vi‖ to be at most double of the upper bound
for ‖vi0 − x∗‖, thus it is still upper bounded by a constant. Since 〈vi0 , x∗〉 is lower bounded by
a constant, again by Assumption 4, we have that the ratio of the input to the output variance in
the quantization of vi0 is upper bounded by a constant. Thus, the total communication cost of this
quantization is O(nd).

By the definition of the quantization scheme, we get

‖x̃(0) − vi0‖ ≤ 〈vi0 , x∗〉
2(
√

2 + 2)
=: ζ.

For the projected vector x(0), we have

‖x(0) − vi0‖ ≤ ‖x̃(0) − vi0‖+ ‖x̃(0) − x(0)‖ ≤ 2‖x̃(0) − vi0‖ ≤ 2ζ

because x(0) is the closest point to x̃(0) belonging to the sphere and vi0 belongs also to the sphere.

By the triangle inequality, we have

‖x(0) − x∗‖ ≤ ‖vi0 − x∗‖+ ‖x(0) − vi0‖

which is equivalent to √
2(1− 〈x(0), x∗〉) ≤

√
2(1− 〈vi0 , x∗〉) + 2ζ.

Thus

〈x(0), x∗〉 ≥ 〈vi0 , x∗〉 −
√

2(1− 〈vi0 , x∗〉)ζ − 2ζ2 ≥ 〈vi0 , x∗〉 −
√

2ζ − 2ζ

= 〈vi0 , x∗〉 − (
√

2 + 2)ζ = 〈vi0 , x∗〉 − (
√

2 + 2)
〈vi0 , x∗〉

2(
√

2 + 2)
=
〈vi0 , x∗〉

2

with probability at least 1− p.

Since 〈vi0 , x∗〉 is lower bounded by a constant, 〈x(0), x∗〉 is also lower bounded by a constant and
we get the desired result.
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