
AC/DC: Alternating Compressed/DeCompressed Training of
Deep Neural Networks

Alexandra Peste∗ Eugenia Iofinova† Adrian Vladu‡ Dan Alistarh§

Abstract

The increasing computational requirements of deep neural networks (DNNs) have led to
significant interest in obtaining DNN models that are sparse, yet accurate. Recent work has
investigated the even harder case of sparse training, where the DNN weights are, for as much as
possible, already sparse to reduce computational costs during training. Existing sparse training
methods are mainly empirical and often have lower accuracy relative to the dense baseline.
In this paper, we present a general approach called Alternating Compressed/DeCompressed
(AC/DC) training of DNNs, demonstrate convergence for a variant of the algorithm, and show
that AC/DC outperforms existing sparse training methods in accuracy at similar computational
budgets; at high sparsity levels, AC/DC even outperforms existing methods that rely on accurate
pre-trained dense models. An important property of AC/DC is that it allows co-training of
dense and sparse models, yielding accurate sparse–dense model pairs at the end of the training
process. This is useful in practice, where compressed variants may be desirable for deployment
in resource-constrained settings without re-doing the entire training flow, and also provides us
with insights into the accuracy gap between dense and compressed models.

1 Introduction
The tremendous progress made by deep neural networks in solving diverse tasks has driven significant
research and industry interest in deploying efficient versions of these models. To this end, entire
families of model compression methods have been developed, such as pruning [HABN+21] and
quantization [GKD+21], which are now accompanied by hardware and software support [Van17,
CMJ+18, DDJ+20, MLP+21, Gra21].

Neural network pruning, which is the focus of this paper, is the compression method with
arguably the longest history [LDS90]. The basic goal of pruning is to obtain neural networks for
which many connections are removed by being set to zero, while maintaining the network’s accuracy.
A myriad pruning methods have been proposed—please see [HABN+21] for an in-depth survey—and
it is currently understood that many popular networks can be compressed by more than an order of
magnitude without significant accuracy loss.

Many accurate pruning methods require a fully-accurate, dense variant of the model, from which
weights are subsequently removed. A shortcoming of this approach is the fact that the memory and
computational savings due to compression are only available for the inference, post-training phase,

∗IST Austria, alexandra.peste@ist.ac.at
†IST Austria, eugenia.iofinova@ist.ac.at
‡CNRS & IRIF, Université de Paris, vladu@irif.fr
§IST Austria, dan.alistarh@ist.ac.at

1

and not during training itself. This distinction becomes important especially for large-scale modern
models, which can have millions or even billions of parameters, and for which fully-dense training
can have high computational and even non-trivial environmental costs [SGM20].

One approach to address this issue is sparse training, which essentially aims to remove connections
from the neural network as early as possible during training, while still matching, or at least
approximating, the accuracy of the fully-dense model. For example, the RigL technique [EGM+20]
randomly removes a large fraction of connections early in training, and then proceeds to optimize
over the sparse support, providing savings due to sparse back-propagation. Periodically, the
method re-introduces some of the weights during the training process, based on a combination of
heuristics, which requires taking full gradients. These works, as well as many recent sparse training
approaches [BKML17, MMS+18, JPR+20], which we cover in detail in the next section, have shown
empirically that non-trivial computational savings, usually measured in theoretical FLOPs, can be
obtained using sparse training, and that the optimization process can be fairly robust to sparsification
of the support.

At the same time, this line of work still leaves intriguing open questions. The first is theoretical :
to our knowledge, none of the methods optimizing over sparse support, and hence providing training
speed-up, have been shown to have convergence guarantees. The second is practical, and concerns a
deeper understanding of the relationship between the densely-trained model, and the sparsely-trained
one. Specifically, (1) current sparse training methods can still leave a non-negligible accuracy gap,
relative to dense training, or even post-training sparsification; and (2) most existing work on sparsity
requires significant changes to the training flow, and focuses on maximizing global accuracy metrics;
thus, we lack understanding when it comes to co-training sparse and dense models, as well as with
respect to correlations between sparse and dense models at the level of individual predictions.

Contributions. In this paper, we take a step towards addressing these questions. We investigate
a general approach for sparse training of neural networks, which we call Alternating Compressed
/ DeCompressed (AC/DC) training. AC/DC performs co-training of sparse and dense models,
and can return both an accurate sparse model, and a dense model, which can recover the dense
baseline accuracy via fine-tuning. We show that a variant of AC/DC ensures convergence for smooth,
non-convex objectives, under analytic assumptions. Extensive experimental results show that it
provides state-of-the-art accuracy among sparse training techniques at comparable training budgets,
and can even outperform post-training sparsification approaches.

AC/DC builds on the classic iterative hard thresholding (IHT) family of methods for sparse
recovery [BD08]. As the name suggests, AC/DC works by alternating the standard dense training
phases, with sparse phases where optimization is performed exclusively over a fixed sparse support,
and a subset of the weights and their gradients are fixed at zero, leading to computational savings.
(This is in contrast to error feedback algorithms, e.g. [CHS+16, LSB+19] which require fully-dense
gradients, even though the weights may be sparse.) The process uses the same number of epochs
and hyper-parameters as regular training, and the frequency and length of the phases can be safely
set to standard values, e.g. 5–10 epochs. We ensure that training ends on a sparse phase, and return
the resulting sparse model, as well as the last dense model obtained at the end of a dense phase.
This dense model may be additionally fine-tuned for a short period, leading to a more accurate
dense-finetuned model, which we usually find to match the accuracy of the dense baseline.

We emphasize that algorithms alternating sparse and dense training phases for deep neural
networks have been previously investigated [JYFY16, HPN+16], but with the different goal on using

2

sparsity as a regularizer to obtain more accurate dense models. Relative to these works, our goal is
to produce highly-accurate, highly-sparse models, as well as maximizing the fraction of training time
for which optimization is performed over a sparse support, leading to computational savings. Also,
we are the first to provide convergence guarantees for variants of this approach.

We perform an extensive empirical investigation of this approach, showing that it provides consis-
tently good results on a wide range of models and tasks (ResNet [HZRS16] and MobileNets [HZC+17]
on the ImageNet [RDS+15] / CIFAR [KH+09] datasets, and Transformers [VSP+17, DYY+19] on
WikiText [MXBS16]), under standard values of the training hyper-parameters. Specifically, when
executed on the same number of training epochs, our method outperforms all previous sparse training
methods in terms of the accuracy of the resulting sparse model, often by significant margins. This
comes at the cost of slightly higher theoretical computational cost relative to prior sparse training
methods, although AC/DC usually reduces training FLOPs to 45–65% of the dense baseline. AC/DC
is also close to the accuracy of state-of-the-art post-training pruning methods [KRS+20, SA20] at
medium sparsities (80% and 90%); surprisingly, it significantly outperforms them at higher sparsities.
In addition, we showcase the flexibility of AC/DC by employing it to obtain semi-structured pruned
models using the 2:4 sparsity pattern efficiently supported by new NVIDIA hardware [MLP+21].
Further, we show that the resulting sparse models can provide real-world speedups for DNN inference
on CPUs [Dee21].

An interesting feature of AC/DC is that it allows for accurate dense/sparse co-training of models.
Specifically, at medium sparsity levels (80% and 90%), the method allows the co-trained dense model
to recover the dense baseline accuracy via a short fine-tuning period. In addition, dense/sparse co-
training provides us with a lens into the training dynamics, in particular relative to the sample-level
accuracy of the two models, but also in terms of the dynamics of the sparsity masks. Specifically, we
observe that co-trained sparse/dense pairs have higher sample-level agreement than sparse/dense
pairs obtained via post-training pruning, and that weight masks still change later in training.

Additionally, we probe the accuracy differences between sparse and dense models, by examining
their “memorization” capacity [ZBH+16]. For this, we perform dense/sparse co-training in a setting
where a small number of valid training samples have corrupted labels, and examine how these samples
are classified during dense and sparse phases, respectively. We observe that the sparse model is
less able to “memorize” the corrupted labels, and instead often classifies the corrupted samples
to their true (correct) class. By contrast, during dense phases model can easily “memorize” the
corrupted labels. (Please see Figure 3a for an illustration.) This suggests that one reason for the
higher accuracy of dense models is their ability to “memorize” hard-to-classify samples.

2 Related Work
There has recently been tremendous research interest into pruning techniques for DNNs; we direct
the reader to the recent surveys of [GEH19] and [HABN+21] for a comprehensive overview. Roughly,
most DNN pruning methods can be split as (1) post-training pruning methods, which start from
an accurate dense baseline, and remove weights, followed by fine-tuning; and (2) sparse training
methods, which perform weight removal during the training process itself. (Other categories such
as data-free pruning methods [LAT18, TKYG20] exist, but they are beyond our scope.) We focus
on sparse training, although we will also compare against state-of-the-art post-training methods.
Another perspective is computational : post-training methods produce efficient model inference
models, but usually still compute dense gradients, while sparse training methods aim to also perform

3

sparse backpropagation, leading to computational gains.

Arguably, the most popular metric for weight removal is weight magnitude [Hag94, HPTD15,
ZG17]. Better-performing approaches exist, such as second-order metrics [LDS90, HSW93, DCP17,
SA20], or Bayesian approaches [MAV17], but these tend to have higher computational and imple-
mentation cost.

The general goal of sparse training methods is to perform both the forward (inference) pass and
the backpropagation pass over a sparse support, leading to computational gains during the training
process as well. One of the first approaches to maintain sparsity throughout training was Deep
Rewiring [BKML17], where SGD steps applied to positive weights are augmented with random walks
in parameter space, followed by inactivating negative weights. To maintain sparsity throughout
training, randomly chosen inactive connections are re-introduced in the “growth” phase. Sparse
Evolutionary Training (SET) [MMS+18] introduces a non-uniform sparsity distribution across layers,
which scales with the number of input and output channels, and trains sparse networks by pruning
weights with smallest magnitude and re-introducing some weights randomly. RigL [EGM+20], prunes
weights at random after a warm-up period, and then periodically performs weight re-introduction using
a combination of connectivity- and gradient-based statistics, which require periodically evaluating
full gradients. RigL can lead to state-of-the-art accuracy results even compared to post-training
methods; however, for this it requires significant additional data passes (e.g. 5x) relative to the
dense baseline. Most recently, Top-KAST [JPR+20] alleviated the drawback of periodically having
to evaluate dense gradients, by updating the sparsity masks using gradients of reduced sparsity
relative to the weight sparsity. This allows some of the pruned weights to be re-introduced during
training, improving accuracy. The latter two methods set the state-of-the-art for sparse training:
when executing for the same number of epochs as the dense baseline, they provide computational
reductions the order of 2x, while the accuracy of the resulting sparse models is lower than that of
leading post-training methods, executed at the same sparsity levels. To our knowledge, all these
methods are heuristics, i.e. do not have convergence guarantees.

Another approach towards pruning with an intermediate computational cost is training sparse net-
works from scratch. The masks are updated by continuously pruning and re-introducing weights. For
example, [LSB+19] uses magnitude pruning after applying SGD on the dense network, whereas [DZ19]
update the masks by re-introducing weights with the highest gradient momentum. STR [KRS+20]
learns a separate pruning threshold for each layer and allows sparsity both during forward and
backward passes; however, the desired sparsity can not be explicitly imposed, and the network has low
sparsity for a large portion of training. These methods can lead to only limited computational gains,
since they either require dense gradients, or the sparsity level cannot be imposed. By comparison,
our method provides models of similar or better accuracy at the same sparsity, with computational
reductions. We also obtain dense models that match the baseline accuracy, with a fraction of the
baseline FLOPS.

The idea of alternating sparse and dense training phases has been examined before in the context
of neural networks, but with the goal of using temporary sparsification as a regularizer. Specifically,
Dense-Sparse-Dense (DSD) [HPN+16] proposes to first train a dense model to full accuracy ; this
model is then sparsified via magnitude; next, optimization is performed over the sparse support,
followed by an additional optimization phase over the full dense support. Thus, this process is
used as a regularization mechanism for the dense model, which results in relatively small, but
consistent accuracy improvements relative to the original dense model. In [JYFY16], the authors

4

propose a similar approach to DSD, but alternate sparse phases during the regular training process.
The resulting process is similar to AC/DC, but, importantly, the goal of their procedure is to
return a more accurate dense model. (Please see their Algorithm 1.) For this, the authors use
relatively low sparsity levels, and gradually increase sparsity during optimization; they observe
accuracy improvements for the resulting dense models, at the cost of increasing the total number of
epochs of training. By contrast, our focus is on obtaining accurate sparse models, while reducing
computational cost, and executing the dense training recipe. We execute at higher sparsity levels,
and on larger-scale datasets and models. In addition, we also show that the method works for other
sparsity patterns, e.g. the 2:4 semi-structured pattern [MLP+21].

More broadly, the Lottery Ticket Hypothesis (LTH) [FC18], states that sparse networks can be
trained in isolation from scratch to the same performance as a post-training pruning baseline, by
starting from the “right” weight and sparsity mask initializations, optimizing only over this sparse
support. However, initializations usually require the availability of the fully-trained dense model,
falling under post-training methods. There is still active research on replicating these intriguing
findings to large-scale models and datasets [GEH19, FDRC19].

3 Alternating Compressed / DeCompressed (AC/DC) Training

3.1 Background and Assumptions
Obtaining sparse solutions to optimization problems is a problem of interest in several areas [CT06,
BD08, Fou11], where the goal is to minimize a function f : RN → R under sparsity constraints:

min
θ∈RN

f(θ) s.t. ‖θ‖0 ≤ k . (1)

For the case of `2 regression, f(θ) = ‖b−Aθ‖22, a solution has been provided by Blumensath and
Davies [BD08], known as the Iterative Hard Thresholding (IHT) algorithm, and subsequent work
[Fou11, Fou12, YLZ14] provided theoretical guarantees for the linear operators used in compressed
sensing. The idea consists of alternating gradient descent (GD) steps and applications of a thresh-
olding operator to ensure the `0 constraint is satisfied. More precisely, Tk is defined as the “top-k”
operator, which keeps the largest k entries of a vector θ in absolute value, and replaces the rest with
0. The IHT update at step t+ 1 has the following form:

θt+1 = Tk(θt − η∇f(θt)). (2)

Most convergence results for IHT assume deterministic gradient descent steps. For DNNs,
stochastic methods are preferred, so we describe and analyze a stochastic version of IHT and prove
its convergence.

Stochastic IHT. We consider functions f : RN → R, for which we can compute stochastic gradients
gθ, which are unbiased estimators of the true gradient ∇f(θ). Define the stochastic IHT update as:

θt+1 = Tk(θt − ηgθt). (3)

This formulation covers the practical case where the stochastic gradient gθ corresponds to a mini-
batch stochastic gradient. Indeed, as in practice f takes the form f(θ) = 1

m

∑m
i=1 f(θ;xi), where

S = {x1, . . . , xm} are data samples, the stochastic gradients obtained via backpropagation take the
form 1

|B|
∑

i∈B∇f(θ;xi), where B is a sampled mini-batch. We aim to prove strong convergence
bounds for stochastic IHT, under common assumptions that arise in the context of training DNNs.

Analytical Assumptions. Formally, our analysis uses the following assumptions on f .

5

1. Unbiased gradients with variance σ: E[gθ|θ] = ∇f(θ), and E[‖gθ −∇f(θ)‖2] ≤ σ2 .
2. Existence of a k∗-sparse minimizer θ∗: ∃θ∗ ∈ arg minθ f(θ), s.t. ‖θ∗‖0 ≤ k∗ .
3. For β > 0, the β-smoothness condition when restricted to t coordinates ((t, β)-smoothness):

f(θ + δ) ≤ f(θ) +∇f(θ)>δ +
β

2
‖δ‖2, for all θ, δ s.t. ‖δ‖0 ≤ t . (4)

4. For α > 0 and number of indices r, the r-concentrated Polyak-Łojasiewicz ((r, α)-CPL) condition:

‖Tr(∇f(θ))‖ ≥ α

2
(f(θ)− f(θ∗)) , for all θ. (5)

The first assumption is standard in stochastic optimization, while the existence of very sparse
minimizers is a known property in over-parametrized DNNs [FC18], and is the very premise of
our study. Smoothness is also a standard assumption, e.g. [LSB+19]—we only require it along
sparse directions, which is a strictly weaker assumption. The more interesting requirement for our
convergence proof is the (r, α)-CPL condition in Equation (5).

The standard Polyak-Łojasiewicz (PL) condition [KNS16] is common in non-convex optimization,
and versions of it are essential in the analysis of DNN training [LZB20, AZLS19]. Its standard
form states that small gradient norm, i.e. approximate stationarity, implies closeness to optimum
in function value. We require a slightly stronger version, in terms of the norm of the gradient
contributed by its largest coordinates in absolute value. This restriction appears necessary for the
success of IHT methods, as the sparsity enforced by the truncation step automatically reduces the
progress ensured by a gradient step to an amount proportional to the norm of the top-k gradient
entries. This strengthening of the PL condition is supported both theoretically, by the mean-field
view, which argues that gradients are sub-gaussian [SM20], and by empirical validations of this
behaviour [AHJ+18, SCCS19].

We are now ready to state our main analytical result.

Theorem 1. Let f : RN → R be a function with a k∗-sparse minimizer θ∗. Let β > α > 0 be
parameters, let k = C · k∗ · (β/α)2 for some appropriately chosen constant C, and suppose that f is
(2k + 3k∗, β)-smooth and (k∗, α)-CPL. For initial parameters θ0 and precision ε > 0, given access to
stochastic gradients with variance σ, stochastic IHT (3) converges in O

(
β
α · ln

f(θ0)−f(θ∗)
ε

)
iterations

to a point θ with ‖θ‖0 ≤ k, such that

E [f (θ)− f (θ∗)] ≤ ε+
16σ2

α
.

Roughly, this result suggests that, for a given set of parameters, by increasing the support
demanded from our approximate minimizer θ relative to the optimal k∗, the parameter α increases,
which leads to lower loss, and potentially to faster running time. We provide a complete proof of
this result in Appendix A. Our analysis approach also works in the absence of the CPL condition
(Theorem 3), in which case we prove that a version of the algorithm can find sparse nearly-stationary
points. As a bonus, we also simplify existing analyses for IHT and extend them to the stochastic
case (Theorem 2). Another interpretation of our results is in showing that, under our assumptions,
error feedback [LSB+19] is not necessary for recovering good sparse minimizers; this has practical
implications, as it allows us to perform fully-sparse back-propagation in sparse optimization phases.
Next, we discuss our practical implementation, and its connection to these theoretical results.

6

Warmup Alternating sparse and dense phases Fine-tune

A
cc

ur
ac

y S
parsity

Training Epoch

Figure 1: The AC/DC training process. After a short warmup we alternatively prune to maximum
sparsity and restore the pruned weights. The plot shows the sparsity and validation accuracy
throughout the process for a sample run on ResNet50/ImageNet at 90% sparsity.

Algorithm 1 Alternating Compressed/Decompressed (AC/DC) Training

Require: Weights θ ∈ RN , data S, sparsity k, compression phases C, decompression phases D
1: Train the weights θ for ∆w epochs . Warm-up phase
2: while epoch ≤ max epochs do
3: if entered a compression phase then
4: θ ← Tk(θ, k) . apply compression (top-k) operator on weights
5: m← 1[θi 6= 0] . create masks
6: end if
7: if entered a decompression phase then
8: m← 1N . reset all masks
9: end if

10: θ ← θ �m . apply the masks (ensure sparsity for compression phases)
11: θ̃ ← {θi|mi 6= 0, 1 ≤ i ≤ N} . get the support for the gradients
12: for x mini-batch in S do
13: θ ← θ − η∇θ̃f(θ;x) . optimize the active weights
14: end for
15: epoch ← epoch +1
16: end while
17: return θ

3.2 AC/DC: Applying IHT to Deep Neural Networks
AC/DC starts from a standard DNN training flow, using standard optimizers such as SGD with
momentum [Qia99] or Adam [KB14] for a fixed number of epochs. It preserves the standard training
hyper-parameters, e.g., learning rate, momentum, weight decay, and will only periodically modify
the support for optimization. Please see Algorithm 1 for pseudocode.

We partition the set of training epochs into compressed epochs C, and decompressed epochs
D. We begin with a dense warm-up period of ∆w consecutive epochs, during which regular dense
(decompressed) training is performed. We then start alternating compressed optimization phases
of length ∆c epochs each, with decompressed (regular) optimization phases of length ∆d epochs
each. The process completes on a compressed fine-tuning phase, returning an accurate sparse model.
Alternatively, if our goal is to return a dense model matching the baseline accuracy, we take the
best dense checkpoint obtained during alternation, and fine-tune it over the entire support. In
practice, we noticed that allowing a longer final decompressed phase of length ∆D > ∆d improves
the performance of the dense model, by allowing it to better recover the baseline accuracy after
fine-tuning. Please see Figure 1 for an illustration of the schedule.

In our experiments, we focus on the case where the compression operation is unstructured or
semi-structured pruning. In this case, at the beginning of each sparse optimization phase, we apply

7

the top-k operator across all of the network weights to obtain a mask M over the weights θ. The
top-k operator is applied globally across all of the network weights, and will represent the sparse
support over which optimization will be performed for the rest of the current sparse phase. At the
end of the sparse phase, the mask M is reset to all-1s, so that the subsequent dense phase will
optimize over the full dense support. Furthermore, once all weights are re-introduced, it is beneficial
to reset to 0 the gradient momentum term of the optimizer; this is particularly useful for the weights
that were previously pruned, which would otherwise have stale versions of gradients.

Discussion. Moving from the theoretical algorithm to a robust practical implementation required
some adjustments, so we now interpret AC/DC from the perspective of our analysis. First, each
decompressed phase can be directly mapped to a deterministic/stochastic IHT step, where, instead
of a single gradient step in between consecutive truncations of the support, we perform several
stochastic steps. These additional steps improve the accuracy of the method in practice, and we
can bound their influence in theory as well, although they do not necessarily provide better bounds.
This leaves open the interpretation of the compressed phases: for this, notice that the core of the
proof for Theorem 1 is in showing that a single IHT step significantly decreases the expected value
of the objective; using a similar argument, we can prove that additional optimization steps over the
sparse support can only improve convergence. We are able to show convergence for a variant of IHT
closely following AC/DC, but the bounds do not improve over Theorem 1.

4 Experimental Validation
Goals and Setup. We tested AC/DC on image classification tasks (CIFAR-100 [KH+09] and
ImageNet [RDS+15]) and on language modelling tasks [MXBS16] using the Transformer-XL model
[DYY+19]. The goal is to examine the validation accuracy of the resulting sparse and dense models,
versus the induced sparsity, as well as the number of FLOPs used for training and inference, relative
to other sparse training methods. Additionally, we compare against state-of-the-art post-training
pruning methods [SA20, KRS+20]. We also examine prediction differences between the sparse and
dense models.

We use PyTorch [PGM+19] for our implementation, and Weights & Biases [Bie20] for experimental
tracking. Experiments were run on NVIDIA RTX 2080 GPUs for image classification tasks, and
NVIDIA RTX 3090 GPUs for language modelling. Each ImageNet run took approximately 2 days
for ResNet50 and one day for MobileNet, while each Transformer-XL experiment took approximately
2 days. All reported image classification experiments were performed in triplicate by varying the
random seed; we report mean and standard deviation. Due to computational limitations, the
language modelling experiments were conducted in a single run.

4.1 CIFAR-100 Experiments
We tested the IHT pruning algorithm on the CIFAR-100 dataset [KH+09]. We used the WideResNet-
28-10 architecture [ZK16], which to our knowledge gives state-of-the-art performance on this dataset.
Models were trained for a fixed period of 200 epochs, using Stochastic Gradient Descent (SGD) with
momentum, and a stepwise decreasing learning rate scheduler. After a warm-up period of ten epochs,
we alternated sparse and dense phases of 20 epochs until epoch 170, at which point we allowed the
sparse model to train to convergence for 30 more epochs. In addition, we found a small benefit to
resetting momentum to 0 at each transition from sparse to dense, and we have done so throughout
the trials. All experiments were replicated starting from three different seeds, and we report average
results and their standard deviations.

8

Table 1: CIFAR-100 Sparsity results on WideResNet

Method Top-1
Acc. (%) Sparsity GFLOPs

Inference
EFLOPs
Train

Dense 79.0± 0.25 0% 11.9 0.36

AC/DC 79.6± 0.17 49.98% 0.50× 0.72×
GMP 79.2± 0.17 49.98% 0.46× 1.64×

AC/DC 80.0± 0.17 74.96% 0.29× 0.6×
GMP 78.9± 0.14 74.96% 0.26× 1.52×

AC/DC 79.1± 0.07 89.96% 0.114× 0.51×
GMP 77.7± 0.23 89.96% 0.13× 1.44×

AC/DC 78.2± 0.12 94.95% 0.08× 0.47×
GMP 76.6± 0.07 94.95% 0.07× 1.41×

We compare our results with Gradual Magnitude Pruning [ZG17]. To our knowledge, we are
the first to release CIFAR-100 pruning results for this network architecture, and GMP was chosen
as a baseline due to its generally strong performance against a range of other approaches [GEH19].
We obtain the GMP baseline by training on the WideResNet-28-10 architecture at full density for
50 epochs, then gradually increasing the sparsity over the next 100 before allowing the model to
converge for the final 50, matching the 200 training epochs of AC/DC. We further validated this
baseline by training dense WideResnet-28-10 models for 200 epochs and then gradually pruning over
50 and finetuning over 50 more, for a total of 300 epochs, which gave similar performance at the
cost of greater FLOPs and training time.

The results are shown in Table 1. We see that AC/DC pruning significantly outperforms Gradual
Magnitude Pruning at all sparsity levels tested, and further that AC/DC models pruned at 50% and
75% even outperform the dense baseline, while the models pruned at 90% at least match it.

4.2 ImageNet Experiments
On the ImageNet dataset [RDS+15], we test AC/DC on ResNet50 [HZRS16] and MobileNetV1
[HZC+17]. In all reported results, the models were trained for a fixed number of 100 epochs,
using SGD with momentum. We use a cosine learning rate scheduler and training hyper-parameters
following [KRS+20], but without label smoothing. Our dense baseline has 76.84% validation accuracy.
We report the average and the standard deviation across 3 different seeds. Unless otherwise specified,
weights are pruned globally, based on their magnitude and in a single step. Similar to previous work,
we did not prune biases, nor the Batch Normalization parameters.

For all results, the AC/DC compression schedule starts with a “warm-up” phase of dense training
for 10 epochs, after which we alternate between compression and de-compression every 5 epochs,
until the last dense and sparse phase. It is beneficial to allow these last two “fine-tuning” phases to
run longer: the last decompression phase runs for 10 epochs, whereas the final 15 epochs are the
compression fine-tuning phase. We reset SGD momentum at the beginning of every decompression
phase. In total, we have an equal number of epochs of dense and sparse training; see Figure 2a
for an illustration. We use exactly the same setup for both ResNet50 and MobileNetV1 models,
which resulted in high-quality sparse models. To recover a dense model with baseline accuracy using
AC/DC, we finetune the best dense checkpoint obtained during training; practically, this replaces
the last sparse fine-tuning phase with a phase where the dense model is fine-tuned instead.

ResNet50 Results. Tables 2 and 3 contain validation accuracy results across medium and high
global sparsity levels, as well as inference and training FLOPs. Overall, AC/DC achieves higher

9

0 10 20 30 40 50 60 70 80 90 100
Epoch

20
30
40
50
60
70

Va
lid

at
io

n
Ac

c.
 (%

)
80 % Sparsity
90 % Sparsity
95 % Sparsity
98 % Sparsity
Compressed
Decompressed

(a) Sparsity pattern and test accuracy

20 30 40 50 60 70 85
Epoch

0

5

10

15

M
as

k
di

ffe
re

nc
e

(%
) 80 %

90 %
95 %
98 %

(b) Relative change in consecutive masks

Figure 2: Validation accuracy and sparsity during training, together with differences in consecutive
masks for ResNet50 on ImageNet using AC/DC.

validation accuracy than any of the state-of-the-art sparse training methods, when using the same
number of epochs. At the same time, due to dense training phases, AC/DC tends to have higher
FLOP requirements relative to RigL or Top-KAST at the same sparsity.
Table 2: Results for medium sparsity on ResNet50.

Method Sparsity
(%)

Top-1
Acc. (%)

GFLOPs
Inference

EFLOPs
Train

Dense 0 76.84 8.2 3.15

AC/DC 79.83 76.3± 0.1 0.29× 0.65×
RigL1×(ERK) 80 75.1± 0.05 0.42× 0.42×
Top-KAST 80 75.03 0.23× 0.32×

STR 79.55 76.19 0.19× -
WoodFisher 80 76.76 0.25× -

AC/DC 89.8 75.03± 0.1 0.19× 0.58×
RigL1× (ERK) 90 73.0± 0.04 0.25× 0.24×
Top-KAST 90 74.76 0.13× -

STR 90.23 74.31 0.08× -
WoodFisher 90 75.21 0.14× -

Table 3: Results for high sparsity on ResNet50.

Method Sparsity
(%)

Top-1
Acc. (%)

GFLOPs
Inference

EFLOPs
Train

Dense 0 76.84 8.2 3.15

AC/DC 94.8 73.14± 0.2 0.12× 0.5×
RigL1× (ERK) 95 69.7± 0.17 0.12× 0.42×
Top-KAST 95 70.42 0.08× 0.1×

STR 94.8 70.97 0.04× -
WoodFisher 95 72.12 - -

AC/DC 97.8 68.44± 0.09 0.06× 0.46×
Top-KAST 98 67.06 0.05× 0.08×

STR 97.78 62.84 0.02× -
WoodFisher 98 65.55 - -

At medium sparsities (80% and 90%), AC/DC sparse models are slightly less accurate than the
state-of-the-art post-training methods (WoodFisher), by small margins. The situation is reversed
at higher sparsities, where AC/DC produces significantly more accurate models: the gap to the
second-best methods (WoodFisher / Top-KAST) is of more than 1% at 95% and 98% sparsity.

Of the existing sparse training methods, Top-KAST is closest in terms of validation accuracy to
our sparse model, at 90% sparsity. However, Top-KAST does not prune the first and last layers,
whereas the results in the tables do not restrict the sparsity pattern. For fairness, we executed
AC/DC using the same layer-wise sparsity distribution as Top-KAST, for both uniform and global
magnitude pruning. For 90% global pruning, results for AC/DC improved significantly; the best
sparse model reached 75.63% validation accuracy (0.6% increase over Table 2), while the best dense
model had 76.85% after fine-tuning. For uniform sparsity, our results did not change significantly:
75.04% validation accuracy for the sparse model and 76.43% - for the fine-tuned dense model. We
also note that Top-KAST has better results at 98% when increasing the number of training epochs
2 times, and considerably fewer training FLOPs (e.g. 15% of the dense FLOPs). For fairness, we
compared against all methods on a fixed number of 100 training epochs and we additionally trained
AC/DC at high sparsity without pruning the first and last layers. Our results improved significantly:
74.16% accuracy for 95% sparsity, and 71.27% for 98% sparsity, both surpassing Top-KAST with
prolonged training. We provide a more detailed comparison in Appendix B.

10

An advantage of AC/DC is that it provides both sparse and dense models at cost below that
of a single dense training run. For medium sparsity, the accuracy of the dense-finetuned model is
very close to the dense baseline. Concretely, at 90% sparsity, with 58% of the total (theoretical)
baseline training FLOPs, we obtain a sparse model which is close to state of the art; in addition,
by fine-tuning the best dense model, we obtain a dense model with 76.56% (average) validation
accuracy. The whole process takes 73% of the baseline training FLOPs.

Interestingly, the sparsity distribution over layers does not change significantly during training;
yet, the dynamics of the masks has an important impact on the performance of AC/DC, as it can
enable faster recovery from sub-optimal pruning decisions. Specifically, we observed that masks keep
getting updated over time, although the change between consecutive sparse masks decreases (please
see Figure 2b), and small percentage of the weights remain fixed at 0 even during dense training.
Please see Appendix B for additional results and analysis.

Table 4: Sparsity results on MobileNetV1.

Method Sparsity
(%)

Top-1
Acc. (%)

GFLOPs
Inference

EFLOPs
Train

Dense 0 71.78 1.1 0.44

AC/DC 74.61 70.3± 0.07 0.35× 0.65×
RigL1× (ERK) 75 68.39 0.52× 0.53×

STR 75.28 68.35 0.18× -
WoodFisher 75.28 70.09 0.28× -

AC/DC 89.52 66.08± 0.09 0.19× 0.57×
RigL1× (ERK) 90 63.58 0.27× 0.29×

STR 89.01 62.1 0.07× -
WoodFisher 89 63.87 0.15× -

Table 5: Sparsity results on Transformer-XL.

Method Sparsity (%) Perplexity
Sparse

Perplexity
Dense

Perplexity
Finetuned Dense

Dense 0 - 18.95 -

AC/DC 80 20.93 20.36 19.46
AC/DC 80, 50 embed. 20.99 20.28 19.5

Top-KAST 80, 0 bwd 19.8 - -
Top-KAST 80, 60 bwd 21.3 - -

AC/DC 90 22.65 21.07 20.08
AC/DC 90, 50 embed. 22.81 21.02 20.07
Top-KAST 90, 80 bwd 25.1 - -

MobileNet Results. We perform the same experiment, using exactly the same setup, on the
MobileNetV1 architecture [HZC+17], which is compact and thus harder to compress. On a training
budget of 100 epochs, our method finds sparse models with higher Top-1 validation accuracy than ex-
isting sparse- and post-training methods, on both 75% and 90% sparsity levels (Table 4). Importantly,
AC/DC uses exactly the same hyper-parameters used for training the dense baseline [KRS+20].
Similar to ResNet50, at 75% sparsity, the dense-finetuned model recovers the baseline performance,
while for 90% it is less than 1% below the baseline.

The only method which obtains higher accuracy for the same sparsity is the version of
RigL [EGM+20] which executes for 5x more training epochs than the dense baseline. However, this
version also uses more computation than the dense model. We limit ourselves to a fixed number of
100 epochs, the same used to train the dense baseline, which would allow for savings in training
time. Moreover, RigL does not prune the first layer and the depth-wise convolutions, whereas for
the results reported we do not impose any sparsity restrictions. Overall, we found that keeping these
layers dense improved our results on 90% sparsity by almost 0.5%. Then, our results are quite close
to RigL2×, with half the training epochs, and less training FLOPs. We provide a more detailed
comparison in Appendix B.2.

Semi-structured Sparsity. We also experiment with the recent 2:4 sparsity pattern (2 weights
out of each block of 4 are zero) proposed by NVIDIA, which ensures inference speedups on the
Ampere architecture. Recently, [MLP+21] showed that accuracy can be preserved under this pattern,
by deriving masks from the pretrained dense model, and re-doing the entire training flow. Also,
[ZMZ+21] proposed more general N:M structures, together with a method for training such sparse
models from scratch. We applied AC/DC to the 2:4 pattern, performing training from scratch and

11

10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

Ac
c.

(%
)-

tru
e

la
be

ls

90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Without data augmentation

10 30 50 70 90 110 130 150 170 190
Epoch

50
55
60
65
70
75
80
85
90

Ac
c.

(%
)-

tru
e

la
be

ls

50 % Sparsity
75 % Sparsity
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(b) With data augmentation

Figure 3: Accuracy during training with AC/DC at various target sparsities, for 1000 randomly
labelled CIFAR10 images, w.r.t their true labels.

obtained sparse models with 76.64% ± 0.05 validation accuracy, i.e. slightly below the baseline.
Furthermore, the dense-finetuned model fully recovers the baseline performance (76.85% accuracy).

4.3 Language Modeling
Next, we apply AC/DC to compressing NLP models. We use Transformer-XL [DYY+19], on the
WikiText-103 dataset [MXBS16], with the standard model configuration with 18 layers and 285M
parameters, trained using the Lamb optimizer [YLR+19] and standard hyper-parameters, which we
describe in Appendix C.2.

The same Transformer-XL model trained on WikiText-103 was used in Top-KAST [JPR+20],
which allows a direct comparison. Similar to Top-KAST, we did not prune the embedding layers,
as this greatly affects the quality, without reducing computational cost. (For completeness, we do
provide results when embeddings are pruned to 50% sparsity.) Our sparse training configuration
consists in starting with a dense warm-up phase of 5 epochs, followed by alternating between
compression and decompression phases every 3 epochs; we follow with a longer decompression phase
between epochs 33-39, and end with a compression phase between epochs 40-48.

The results are shown in Table 5. Relative to Top-KAST, our approach provides significantly
improved test perplexity at 90% sparsity, as well as better results at 80% sparsity with sparse
back-propagation. (Top-KAST provides superior perplexity at 0% backward sparsity, but this
provides little to no training speedup.) The results confirm that AC/DC is scalable and extensible.
We note that our hyper-parameter tuning for this experiment was minimal.

4.4 Additional Properties
Output Analysis. We probe the accuracy difference between the sparse and dense-finetuned models.
We first examineed sample-level agreement between sparse and dense-finetuned pairs produced by
AC/DC, relative to model pairs produced by gradual magnitude pruning (GMP). Co-trained model
pairs consistently agree on more samples relative to GMP: for example, on the 80%-pruned ResNet50
model, the AC/DC model pair agrees on the Top-1 classification of 90% of validation samples,
whereas the GMP models agree on 86% of the samples. A similar trend holds for the cross-entropy
between model outputs.

Memorization. Second, we analyze differences in “memorization” capacity [ZBH+16] between dense
and sparse models. For this, we apply AC/DC to ResNet20 trained on a variant of CIFAR-10 where
a subset of 1000 samples have randomly corrupted class labels, and examine the accuracy on these
samples during training. We first consider the setting where no data augmentation is used, and study

12

90% and 95% sparsity AC/DC runs. Figure 3a shows the results, when the accuracy for each sample
is measured with respect to the true, un-corrupted label. During early training and during sparse
phases, the network tends to classify corrupted samples to their true class, “ignoring” label corruption.
However, as training progresses, due to dense training phases and lower learning rate, networks tend
to “memorize” these samples, assigning them to their corrupted class. This phenomenon is even
more prevalent at 95% sparsity, where the network is less capable of memorization. Interestingly,
when data augmentation is used during training, both the sparse and dense models correctly classify
most of the perturbed samples to their true labels, in the case of AC/DC runs at higher sparsity
levels (90% and 95%). For lower sparsity levels (50% and 75%), more of the perturbed samples are
memorized. This behavior can be observed in Figure 3b. We discuss these findings in more detail in
Appendix B.5.

Practical Speedups. One remaining question regards the potential of sparsity to provide real-world
speedups. While this is an active research area, e.g. [EDGS20], we partially address this concern in
Appendix B.3, by showing inference speedups for our models on a CPU inference platform supporting
unstructured sparsity [Dee21]: for example, our 90% sparse ResNet50 model provides 1.75x speedup
for real-time inference (batch-size 1) on a resource-constrained processor with 4 cores, and 2.75x
speedup on 16 cores at batch size 64, versus the dense model.

5 Conclusion, Limitations, and Future Work
We introduced AC/DC—a method for co-training sparse and dense models, with theoretical guar-
antees. Experimental results show that AC/DC improves upon the accuracy of previous sparse
training methods, and obtains state-of-the-art results at high sparsities. Importantly, we recover
near-baseline performance for dense models and do not require extensive hyper-parameter tuning.
We also show that AC/DC has potential for real-world speed-ups in inference and training, with
the appropriate software and hardware support. The method has the advantage of returning both
an accurate standard model, and a compressed one, which may be useful in deployment scenarios.
Our model output analysis confirms the intuition that sparse training phases act as a regularizer,
preventing the (dense) model from memorizing corrupted samples. At the same time, they prevent
the memorization of hard samples, which can affect accuracy.

The main limitations of AC/DC are its reliance on dense training phases, which limits the
achievable training speedup, and the need for tuning the length and frequency of sparse/dense
phases. We believe the latter issue can be addressed with more experimentation, as simple patterns
tend to work well out-of-the-box; however, both the theoretical results and the output analysis
suggest that dense phases may be necessary for good accuracy. We plan to further investigate this
in future work, together with applying AC/DC to other compression methods, such as quantization,
as well as leveraging sparse training on hardware that could efficiently support it, such as Graphcore
IPUs [Gra21].

Acknowledgements
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML),
and a CNRS PEPS grant. We would also like to thank Christoph Lampert for his feedback on an
earlier version of this work, as well as for providing hardware for the Transformer-XL experiments.

13

Appendices

Table of Contents

1 Introduction 1

2 Related Work 3

3 Alternating Compressed / DeCompressed (AC/DC) Training 5

3.1 Background and Assumptions . 5

3.2 AC/DC: Applying IHT to Deep Neural Networks . 7

4 Experimental Validation 8

4.1 CIFAR-100 Experiments . 8

4.2 ImageNet Experiments . 9

4.3 Language Modeling . 12

4.4 Additional Properties . 12

5 Conclusion, Limitations, and Future Work 13

Appendices 14

A Convergence Proofs 15

A.1 Overview . 15

A.2 Stochastic IHT for Non-Convex Functions with Concentrated PL Condition 18

A.3 Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity . . . 22

A.4 Finding a Sparse Nearly-Stationary Point . 24

A.5 Deferred Proofs . 25

B Additional Experiments 29

B.1 ResNet50 on ImageNet . 29

B.2 MobileNet on ImageNet . 32

B.3 Inference Speedups . 34

B.4 Sparse-Dense Output Comparison . 35

B.5 Memorization Experiments on CIFAR10 . 36

C Computational Details 37

C.1 FLOPs Computation . 37

14

C.2 Choice of Hyper-parameters . 38

A Convergence Proofs
In this section we provide the convergence analysis for our algorithms. We prove Theorem 1 and
show as a corollary that under reasonable assumptions our implementation of AC/DC converges to
a sparse minimizer.

A.1 Overview
We use the notation and assumptions defined in Section 3.1. As all of our analyses revolve around
bounding the progress made in a single iteration, to simplify notation we will generally use θ to
denote the current iterate, and θ′ to denote the iterate obtained after the IHT update:

θ′ = Tk(θ − ηgθ) .
Additionally, we let S, S′, S∗ ⊆ [N] to denote the support of θ, θ′ and θ∗ respectively, where θ∗ is the
promised k∗-sparse minimizer. Given an arbitrary vector x, we use supp(x) to denote its support,
i.e. the set of coordinates where x is nonzero. We may also refer to the minimizing value of f as
f∗ = f(θ∗).

Before providing more intuition for the analysis, we give the main theorem statements.

Stochastic IHT for Functions with Concentrated PL Condition. We restate the Theorem
from Section 3.1.

Theorem 1. Let f : RN → R be a function with a k∗-sparse minimizer θ∗. Let β > α > 0 be
parameters, let k = C · k∗ · (β/α)2 for some appropriately chosen constant C, and suppose that f is
(2k + 3k∗, β)-smooth and (k∗, α)-CPL. For initial parameters θ0 and precision ε > 0, given access to
stochastic gradients with variance σ, stochastic IHT (3) converges in O

(
β
α · ln

f(θ0)−f(θ∗)
ε

)
iterations

to a point θ with ‖θ‖0 ≤ k, such that

E [f (θ)− f (θ∗)] ≤ ε+
16σ2

α
.

Additionally, we give a corollary that justifies our implementation of AC/DC. As opposed to the
theoretical stochastic IHT algorithm, AC/DC performs a sequence of several dense SGD steps before
applying a single pruning step. We show that even with this change we can provide theoretical
convergence bounds, although these bounds can be weaker than the baseline IHT method under our
assumptions.

Corollary 1 (Convergence of AC/DC). Let f : RN → R be a function that decomposes as f(θ) =
1
m

∑m
i=1 fi(θ), and has a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters, let k = C ·k∗ · (β/α)2

for some appropriately chosen constant C, suppose that each fi is (N, β)-smooth, and L-Lipschitz,
and that f is (k∗, α)-CPL.

Let ∆c and B be integers, and let {S1, . . . , SB} be a partition of [m] into B subsets of cardinality
O(m/B) each. Given θ, let g(i)θ = 1

|Si|
∑

j∈Si
∇fj(θ).

Suppose we replace the IHT iteration with ∆c phases during each of which we perform a full pass
over the data by performing the iteration θ′ = θ − ηg(i)θ for all i ∈ [B], and at the end of the ∆c

phases we apply the truncation operator Tk. This is optionally followed by a sparse training phase
which fully optimizes f over the sparse support.

15

For initial parameters θ0 and precision ε > 0, this algorithm converges in O
(
β
α · ln

f(θ0)−f(θ∗)
ε

)
iterations to a point θ with ‖θ‖0 ≤ k, such that

f (θ)− f (θ∗) ≤ ε+O

(
L2

α

)
.

We provide the main proofs for these statements in Section A.2.

Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity. We
also provide a streamlined analysis for stochastic IHT under standard assumptions. Compared to
[JTK14] which achieves similar guarantees (in particular both suffer from a blow-up in sparsity
that is quadratic in the restricted condition number of f) we significantly simplify the analysis and
provide guarantees when only stochastic gradients are available. Notably, the quadratic dependence
in condition number can be improved to linear, at the expense of a significantly more sophisticated
algorithm which requires a longer running time [AS20].

Theorem 2. Let f : RN → R be a function with a k∗-sparse minimizer θ∗. Let β > α > 0 be
parameters, let k = C · k∗ · (β/α)2 for some appropriately chosen constant C, and suppose that f is
(2k + k∗, β)-smooth and (k + k∗, α)-strongly convex in the sense that

f(θ + δ) ≥ f(θ) +∇f(θ)>δ +
α

2
‖δ‖2, for all θ, δ s. t. ‖δ‖0 ≤ k + k∗.

For initial parameters θ0 and precision ε > 0, given access to stochastic gradients with variance σ,
IHT (3) converges in O

(
β
α · ln

‖θ0−θ∗‖
ε/β+σ2/(αβ)

)
iterations to a point θ with ‖θ‖0 ≤ k, such that

E
[
‖θ − θ∗‖2

]
≤ ε

β
+

2σ2

αβ

and

E [f (θ)− f (θ∗)] ≤ ε+
2σ2

α
.

We prove this statement in Section A.3.

Finding a Sparse Nearly-Stationary Point. We can further relax the assumptions, and show
that IHT can recover sparse iterates that are nearly-stationary (i.e. have small gradient norm).
Finding nearly-stationary points is a standard objective in non-convex optimization. However,
enforcing the sparsity guarantee is not. Here we show that IHT can further provide stationarity
guarantees even with minimal assumptions.

Intuitively, this results suggests that error feedback may not be necessary for converging to
stationary points under parameter sparsity.

In this case, we alternate IHT steps with optimization steps over the sparse support, which
reduce the norm of the gradient resteicted to the support to some target error ε.

Theorem 3. Let f : RN → R. Let β, ε > 0 be parameters, let k be the target sparsity, and suppose
that f is (2k, β)-smooth. Furthermore, suppose that after each IHT step with a step size η = β−1

and target sparsity k, followed by optimizing over the support to gradient norm ε, all the obtained
iterates satisfy

‖θ‖∞ ≤ R∞ (k) .
16

For initial parameters θ0 and precision ε > 0, given access to stochastic gradients with variance σ, in
O
(
β (f (θ0)− f (θT)) ·min

{
1
ε2
, 1
β2kR∞(η,k)2

, 1
β2σ2

})
iterations we can obtain an k-sparse iterate θ

such that
‖∇f (θ)‖∞ = O

(
βR∞ (k)

√
k + βσ + ε

)
.

We provide proofs in Section A.4.

Proof Approach. Let us briefly explain the intuition behind our theoretical analyses. We can
view IHT as a version of projected gradient descent, where iterates are projected onto the non-convex
domain of k-sparse vectors.

In general, when the domain is convex, projections do not hurt convergence. This is because
under specific assumptions, gradient descent makes progress by provably decreasing the `2 distance
between the iterate and the optimal solution. As projecting the iterate back onto the convex domain
can only improve the distance to the optimum, convergence is unaffected even in those constrained
settings.

In our setting, as the set of k-sparse vectors is non-convex, the distance to the optimal solution
can increase. However, we can show a trade-off between how much this distance increases and the
ratio between the target and optimal sparsity k/k∗.

Intuition. Intuitively, consider a point θ̃ obtained by taking a gradient step
θ̃ = θ − η∇f(θ) . (6)

While this step provably decreases the distance to the optimum ‖θ̃ − θ∗‖ � ‖θ − θ∗‖, after applying
the projection by moving to the projection Tk(θ̃), the distance ‖Tk(θ̃) − θ∗‖ may increase again.
The key is that this increase can be controlled. For example, the new distance can be bounded via
triangle inequality by

‖Tk(θ̃)− θ∗‖ ≤ ‖θ̃ − Tk(θ̃)‖+ ‖θ̃ − θ∗‖ ≤ 2‖θ̃ − θ∗‖ .
The last inequality follows from the fact that by definition Tk(θ̃) is the closest k-sparse vector to θ̃
in `2 norm, and thus the additional distance payed to move to this projected point is bounded by
‖θ̃ − θ∗‖. Thus, if the gradient step (6) made sufficient progress, for example ‖θ̃ − θ∗‖ ≤ 1

3‖θ − θ
∗‖

we can conclude that the additional truncating step does not fully undo progress, as

‖Tk(θ̃)− θ∗‖ ≤ 2‖θ̃ − θ∗‖ ≤ 2

3
‖θ − θ∗‖ ,

so the iterate still converges to the optimum.

In reality, we can not always guarantee that a single gradient step reduces the distance by a large
constant fraction – as a matter of fact this is determined by how well the function f is conditioned.
However we can reduce the lost progress that is caused by the truncation step simply by increasing
the number of nonzeros of the target solution, i.e. increasing the ratio k/k∗.

This is captured by the following crucial lemma which also appears in [JTK14]. A short proof
can be found in Section A.5.

Lemma 1. Let θ∗ be a k∗-sparse vector, and let θ be an n-sparse vector. Then
‖Tk (θ)− θ‖2

n− k
≤ ‖θ

∗ − θ‖2

n− k∗
.

17

Its usefulness is made obvious in the proof of Theorem 2 which explicitly tracks as a measure of
progress the distance between the current iterate and the sparse optimum. This is shown in detail in
Section A.3.

The proofs of Theorems 1 and 3 are slightly more complicated, as they track progress in terms
of function value rather than distance to the sparse optimum. However, similar arguments based
on Lemma 1 still go through. An added benefit is that these analyses show that alternating IHT
steps with gradient steps over the sparse support can only help convergence, as these additional
steps further decrease error in function value. This fact is important to theoretically justify the
performance of the AC/DC algorithm. In the following sections we provide proofs for our theorems.

A.2 Stochastic IHT for Non-Convex Functions with Concentrated PL Condi-
tion

In this section we show that the ideas developed before apply to non-convex settings. We analyze IHT
for a class of functions that satisfy a special version of the Polyak-Łojasiewicz (PL) condition [KNS16]
which is standard in non-convex optimization, and certain versions of it were essential in several
works analyzing the convergence of training methods for deep neural networks [LZB20, AZLS19].
Usually this condition says that small gradient norm i.e. approximate stationarity implies closeness
to optimum in function value. Here we use the stronger (r, α)-CPL condition (see Equation 5), which
considers the norm of the gradient contributed by its largest coordinates in absolute value.

We prove strong convergence bounds for functions that satisfy the CPL condition. Compared
to the classical Polyak-Łojasiewicz condition, this adds the additional assumption that most of the
mass of the gradient is concentrated on a small subset of coordinates. This phenomenon has been
witnessed in several instances, and is implicitly used in [LSB+19].

Before proceeding with the proof we again provide a few useful lemmas.

Lemma 2. If f is (`, β)-smooth, then for any `-sparse δ, one has that

f (θ + δ) ≤ f (θ) +
β

2

∥∥∥∥∥
(

1

β
∇f (θ) + δ

)
supp(δ)

∥∥∥∥∥
2

− 1

2β

∥∥∥∇f (θ)supp(δ)

∥∥∥2 .

Proof. Applying smoothness we bound

f (θ + δ) ≤ f (θ) + 〈∇f (θ) , δ〉+
β

2
‖δ‖2

= f (θ) +
1

2β
‖∇f (θ)‖2 + 〈∇f (θ) , δ〉+

β

2
‖δ‖2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
1

2

∥∥∥∥ 1√
β
∇f (θ) +

√
βδ

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
β

2

∥∥∥∥ 1

β
∇f (θ) + δ

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2 .

Next we notice that the contributions of the two terms β
2

∥∥∥ 1
β∇f (θ) + δ

∥∥∥2 and 1
2β ‖∇f (θ)‖2 exactly

match on the coordinates not touched by δ. Hence everything outside the support of δ cancels out,
which yields the desired conclusion.

We require another lemma which will be very useful in the analysis.
18

Lemma 3. Let θ, g ∈ RN such that supp (θ) = S, and let S′, S∗ be some arbitrary subsets, with
|S′| = |S| > |S∗|. Furthermore suppose that

Tk (θ + g) = (θ + g)S′ .

Then ∥∥∥(θ + g)S\S′
∥∥∥2 − ‖gS∪S′‖2 ≤ ∥∥∥(θ + g)Z\S′

∥∥∥2 − ‖gS∗‖2 ,

for some set Z such that |Z \ S′| ≤ 2 |S∗|.

Proof. We prove this as follows. We write∥∥∥(θ + g)S\S′
∥∥∥2 − ‖gS∪S′‖2 =

∥∥∥(θ + g)(S∗∪S)\S′
∥∥∥2 − ∥∥∥(θ + g)S∗\(S∪S′)

∥∥∥2 − ‖gS∪S′‖2
=
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ∥∥gS∗\(S∪S′)∥∥2 − ‖gS∪S′‖2
=
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ‖gS∗∪S∪S′‖2
=
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ∥∥gS′\(S∗∪S)∥∥2 − ‖gS∗∪S‖2 .

Since ∥∥gS′\(S∗∪S)∥∥2 =
∥∥∥(θ + g)S′\(S∗∪S)

∥∥∥2 ≥ ‖(θ + g)R‖
2 ,

where R is a subset R ⊆ (S∗ ∪ S) \ S′ with |R| = |S′ \ (S∗ ∪ S)|. Such a set definitely exists as∣∣(S∗ ∪ S) \ S′
∣∣ ≥ ∣∣S \ S′∣∣ =

∣∣S′ \ S∣∣ ≥ ∣∣S′ \ (S∗ ∪ S)
∣∣ = |R| .

Hence we obtain that∥∥∥(θ + g)S\S′
∥∥∥2 − ‖gS∪S′‖2 ≤ ∥∥∥(θ + g)((S∗∪S)\S′)\R

∥∥∥2 − ‖gS∗∪S‖2 .

Note that ∣∣((S∗ ∪ S) \ S′
)
\R
∣∣ =

∣∣(S∗ ∪ S) \ S′
∣∣− |R| = ∣∣(S∗ ∪ S) \ S′

∣∣− ∣∣S′ \ (S∗ ∪ S)
∣∣

≤
(
|S∗|+

∣∣S \ S′∣∣)− (∣∣S′ \ S∣∣− |S∗|)
= 2 |S∗| .

This concludes the proof.

Using this we derive the following useful corollary.

Corollary 2. Let θ, g ∈ RN such that supp (θ) = S, and let S′, S∗ be arbitrary subsets, with
|S′| = |S| > |S∗|. Furthermore suppose that

Tk (θ + g) = (θ + g)S′ .

Then one has that∥∥∥(θ + g)S\S′
∥∥∥2 − ‖gS∪S′‖2 ≤ 2 |S∗|+ |supp (θ∗)|

|S′| − |supp (θ∗)|
· ‖(θ + g)T − θ

∗‖2 − ‖gS∗‖2 ,

for some T , such that |T | ≤ 2 |S∗|+ |supp (θ∗)|+ |S′| and supp (θ∗) ⊆ T .

Proof. Using Lemma 3 we can write∥∥∥(θ + g)S\S′
∥∥∥2 − ‖gS∪S′‖2 ≤ ∥∥∥(θ + g)Z\S′

∥∥∥2 − ‖gS∗‖2 ≤ ∥∥∥(θ + g)(Z∪supp(θ∗))\S′
∥∥∥2 − ‖gS∗‖2

19

=
∥∥∥(θ + g)Z∪supp(θ∗)∪S′ − (θ + g)S′

∥∥∥2 − ‖gS∗‖2 .

where |Z ∪ supp (θ∗) ∪ S′| ≤ 2 |S∗|+ |supp (θ∗)|+ |S′|. Applying Lemma 1 we furthermore obtain
that

‖(θ + g)Z∪S∗∪S′ − (θ + g)S′‖
2 ≤ |Z ∪ supp (θ∗) ∪ S′| − |S′|
|Z ∪ supp (θ∗) ∪ S′| − |supp (θ∗)|

·
∥∥∥(θ + g)Z∪supp(θ∗)∪S′ − θ

∗
∥∥∥2

≤ 2 |S∗|+ |supp (θ∗)|
|S′| − |supp (θ∗)|

·
∥∥∥(θ + g)Z∪supp(θ∗)∪S′ − θ

∗
∥∥∥2 .

We can now proceed with the main proof.

Proof of Theorem 1. For simplicity we first provide the proof for the deterministic version, which
roughly follows the ideas described in [JTK14]. Afterwards, we extend it to the stochastic setting.
To simplify notation, throughout this proof we will use η = 1

β .

Using Lemma 2 we can write that for the update

δ = Tk (θ − η∇f (θ))− θ ,
we have

f
(
θ′
)
≤ f (θ) +

1

2η

∥∥∥∥∥
(

1

β
∇f (θ) + Tk (θ − η∇f (θ))− θ

)
supp(δ)

∥∥∥∥∥
2

− 1

2η

∥∥∥η∇f (θ)supp(δ)

∥∥∥2
= f (θ) +

1

2η

∥∥∥(Tk (θ − η∇f (θ))− (θ − η∇f (θ)))supp(δ)

∥∥∥2 − 1

2η

∥∥∥η∇f (θ)supp(δ)

∥∥∥2 .

At this point we use the fact that by definition supp (δ) = S′ ∪ S. Furthermore we see that

‖(Tk (θ − η∇f (θ))− (θ − η∇f (θ)))S′∪S‖
2 =

∥∥∥(θ − η∇f (θ))S\S′
∥∥∥2

since Tk (θ − η∇f (θ)) exactly matches θ − η∇f (θ) for the coordinates in S′, and is 0 for all the
others. Thus we have that

f
(
θ′
)
≤ f (θ) +

1

2η

(∥∥∥(θ − η∇f (θ))S\S′
∥∥∥2 − ‖η∇f (θ)S∪S′‖

2

)
.

In order to apply the CPL property, we need to relate this to the contribution to the gradient
norm given by the heavy signal ‖Tk∗ (∇f (θ))‖2. Let S∗ be the support of Tk∗ (∇f (θ)). We apply
Corollary 2 to further bound

f
(
θ′
)
≤ f (θ) +

1

2η

(
3k∗

k − k∗
‖(θ − η∇f (θ))T − θ

∗‖2 − ‖η∇f (θ)S∗‖
2

)
,

where |T | ≤ 3k∗ + k. Now we apply the CPL property as follows. From Lemma 6 we upper bound

‖(θ − η∇f (θ))T − θ
∗‖2 ≤ ‖(θ − η∇f (θ))T∪S − θ

∗‖2

≤ 8

α
(f (θ − η∇f (θ)T∪S)− f (θ∗))

≤ 8

α
(f (θ)− f (θ∗)) ,

In the first inequality we used the fact that supp (θ∗) ⊆ T . In the second one we applied Lemma 6.
In the third one we applied (3k∗ + 2k, β)-smoothness (since |T ∪ S| ≤ 3k∗ + 2k) together with the
fact that η = 1/β, and so f (θ − η∇f (θ)T∪S) ≤ f (θ).

20

Similarly we apply the CPL inequality to conclude that

f
(
θ′
)
≤ f (θ) +

1

2η

(
3k∗

k − k∗
· 8

α
(f (θ)− f (θ∗))− η2 · α

2
(f (θ)− f (θ∗))

)
.

Thus equivalently:

f
(
θ′
)
− f (θ∗) ≤ (f (θ)− f (θ∗))

(
1 +

12k∗

k − k∗
· 1

ηα
− ηα

4

)
= (f (θ)− f (θ∗))

(
1 +

12k∗

k − k∗
· κ− 1

4κ

)
,

where κ = β/α = 1/(ηα). Since k ≥ k∗ ·
(
96κ2 + 1

)
we equivalently have that k∗

k−k∗ ≤
1

96k2
and thus

12k∗

k−k∗ · κ ≤
1
8κ . Hence

f
(
θ′
)
− f (θ∗) ≤ (f (θ)− f (θ∗)) ·

(
1− 1

8κ

)
.

This shows that in O
(
κ ln f(θ0)−f(θ∗)

ε

)
we reach a point θ such that f (θ) − f (θ∗) ≤ ε, which

concludes the proof.

We extend this proof to the stochastic version in Section A.5.

Now let us show how Corollary 1 follows from the same analysis.

Proof of Corollary 1. The proof extends from that to Theorem 1. The difference we need to handle
is the error introduced by performing ∆c passes through the data instead of a single stochastic
gradient step. Suppose that before starting the dense training phase, the current iterate is θ. The
key is to bound the error introduced by performing these ∆c passes instead of simply changing the
iterate by −η∇f(θ), prior to applying the pruning step. To do so we first upper bound the change in
the iterate after ∆c passes, which lead to a new iterate θ̃. Since we perform ∆c ·B iterations instead
of a single one, we damp down our step size by setting η′ = η/(∆cB), and measure the movement
we made compared to the one we would have made with a single deterministic gradient step.

Using the Lipschitz property of the functions in the decomposition, we see that each step changes
our iterate by at most η′L in `2 norm. Hence over ∆c passes through the data, each of which involves
B mini-batches, the total change in the iterate is at most:

‖θ̃ − θ‖ ≤ ∆c ·B · η′L = ηL .

Using the smoothness property of each fi this guarantees that for all the seen iterates θ̂, the gradients
of fi’s never deviate significantly from their values at the original point θ:

‖∇fi(θ̂)−∇fi(θ)‖ ≤ βηL ,
Thus if we interpret the scaled total movement in iterate 1

η (θ − θ̃) as a gradient mapping, it satisfies∥∥∥∥1

η
(θ − θ̃)−∇f(θ)

∥∥∥∥ ≤ βηL .
Applying the analysis for the stochastic version of Theorem 1 we can treat the error in the gradient
mapping exactly as the stochastic noise. For the specific choice of step size used there η = 1/Θ(β),
we thus get that ∥∥∥∥1

η
(θ − θ̃)−∇f(θ)

∥∥∥∥ = O(L) ,

21

thus the ∆c passes over the data can be treated as a single gradient step with error O(L), which
introduces in total

η‖∇f(θ)‖ ·O(L) +
β

2
η2L2 = O(ηL2) ,

error in the function value decrease per iteration with step size η. Treating the O(L2) term the same
as stochastic noise σ2 in the original analysis, we conclude the proof.

Note that the steps performed during the sparse training phases do not affect convergence as
they can only improve error in function value, which is the main quantity that our analysis tracks.

A.3 Stochastic IHT for Functions with Restricted Smoothness and Strong Con-
vexity

Before proceeding with the proof for Theorem 2, we provide a few useful statements. Additionally
we provide a few more useful statements related to the fact that f is well conditioned along sparse
directions.

Lemma 4. If f is (2k + k∗, β)-smooth and (k + k∗, α)-strongly convex then

f(θ∗) ≥ f(θ) + 〈∇f(θ)S∪S′∪S∗ , θ
∗ − θ〉+

α

2
‖θ − θ∗‖2 ,

f

(
θ − 1

β
∇f(θ)S∪S′∪S∗

)
≤ f(θ)− 1

2β
‖∇f(θ)S∪S′∪S∗‖2 .

Proof. The former follows directly from the definition. For the latter we have

f

(
θ − 1

β
∇f(θ)S∪S′∪S∗

)
≤ f(θ)− 1

β
〈∇f(θ),∇f(θ)S∪S′∪S∗〉+

β

2
‖∇f(θ)S∪S′∪S∗‖2

= f(θ)− 1

2β
‖∇f(θ)S∪S′∪S∗‖2 .

Finally we can prove the main statement:

Proof. We will track progress by measuring the distance‖θ − θ∗‖2. To do so we write∥∥θ′ − θ∗∥∥2 = ‖Tk (θ − ηgθ)− θ∗‖2

= ‖(θ − ηgθ − θ∗) + (Tk (θ − ηgθ)− (θ − ηgθ))‖2

= ‖(θ − ηgθ − θ∗)S′∪S∗ + (Tk ((θ − ηgθ)S′∪S∗)− (θ − ηgθ)S′∪S∗)‖
2 .

The last identity follows from the fact that the term inside the norm is only supported at S′ ∪ S∗.
Thus, after applying the triangle inequality, we obtain that:∥∥θ′ − θ∗∥∥2 ≤ (‖(θ − ηgθ)S′∪S∗ − θ

∗‖+ ‖Tk ((θ − ηgθ)S′∪S∗)− (θ − ηgθ)S′∪S∗‖)
2 .

The second term can now be bounded using Lemma 1. Since the sparsity of the projected point is
k + k∗ we have that

‖Tk ((θ − ηgθ)S′∪S∗)− (θ − ηgθ)S′∪S∗‖
2 ≤ k + k∗ − k

k + k∗ − k∗
‖(θ − ηgθ)S′∪S∗ − θ

∗‖2

=
k∗

k
· ‖(θ − ηgθ)S′∪S∗ − θ

∗‖2 .
22

Therefore:∥∥θ′ − θ∗∥∥2 ≤ (1 +

√
s∗

s

)2

· ‖(θ − ηgθ)S′∪S∗ − θ
∗‖2 ≤

(
1 +

√
s∗

s

)2

· ‖(θ − ηgθ)S∪S′∪S∗ − θ
∗‖2 .

The second inequality follows from the fact that as we increase the support of θ− ηgθ to also include
S \ (S′ ∪ S∗), the norm inside can only increase. Finally by expanding, we write:
‖(θ − ηgθ)S∪S′∪S∗ − θ

∗‖2 = ‖θ − η (gθ)S∪S′∪S∗ − θ
∗‖2

= ‖θ − θ∗‖2 − 2η 〈(gθ)S∪S′∪S∗ , θ − θ
∗〉+ η2 ‖(gθ)S∪S′∪S∗‖

2

≤ ‖θ − θ∗‖2 − 2η 〈∇f (θ)S∪S′∪S∗ , θ − θ
∗〉+ 2η2 ‖∇f (θ)S∪S′∪S∗‖

2

+ 2η 〈(∇f (θ)− gθ)S∪S′∪S∗ , θ − θ
∗〉+ 2η2 ‖(∇f (θ)− gθ)S∪S′∪S∗‖

2︸ ︷︷ ︸
ζ

,

where we use ζ to denote the error term introduced by using stochastic gradients. Next we bound
the fist part of the term above. To do so we use lemma to write
‖θ − θ∗‖2 − 2η 〈∇f (θ)S∪S′∪S∗ , θ − θ

∗〉+ 2η2 ‖∇f (θ)S∪S′∪S∗‖
2

≤‖θ − θ∗‖2 − 2η
(
f (θ)− f (θ∗)− α

2
‖θ − θ∗‖2

)
+ 2η2 ‖∇f (θ)S∪S′∪S∗‖

2

= ‖θ − θ∗‖2 (1− ηα)− 2η
(
f (θ)− f (θ∗)− η ‖∇f (θ)S∪S′∪S∗‖

2
)

= ‖θ − θ∗‖2 (1− ηα)− 2η

(
f (θ)− f (θ∗)− 1

2β
‖∇f (θ)S∪S′∪S∗‖

2

)
− 2η ·

(
1

2β
− η
)
‖∇f (θ)S∪S′∪S∗‖

2

≤‖θ − θ∗‖2 (1− ηα)− 2η ·
(

1

2β
− η
)
‖∇f (θ)S∪S′∪S∗‖

2 .

For the first inequality we used the restricted strong convexity property, while for the second we
used the restricted smoothness property. Now for the error term we have that:

E [ζ|θ] ≤ 2η2σ2 ,

which enables us to conclude that

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤

(
1 +

√
k∗

k

)2

·
(
‖θ − θ∗‖2 (1− ηα)− 2η ·

(
1

2β
− η
)
‖∇f (θ)S∪S′∪S∗‖

2 + 2η2σ2
)
.

Setting η = 1
2β this gives us that

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤

(
1 +

√
s∗

s

)2

·

(
‖θ − θ∗‖2

(
1− 1

2
· α
β

)
+

1

2

(
σ

β

)2
)
.

Thus for as long as ‖θ − θ∗‖2 ≥ 2 σ
2

αβ we have that

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤

(
1 +

√
k∗

k

)2

·
(

1− 1

4
· α
β

)
· ‖θ − θ∗‖2 .

We see that the expected squared distance contracts by setting the ratio k/k∗ sufficiently large.
Indeed if k ≥ 81 (β/α)2 · k∗ we have that:

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤ (1 +

1

9
· α
β

)2

·
(

1− 1

4
· α
β

)
· ‖θ − θ∗‖2 ≤

(
1− 1

36
· α
β

)
· ‖θ − θ∗‖2 .

23

Taking expectation over the entire history of iterates we can thus conclude that after T =

O
(
β
α · ln

‖θ0−θ∗‖2
ε/β+σ2/αβ

)
iterations we obtain

E
[
‖θT − θ∗‖2

]
≤ ε

β
+

2σ2

αβ
.

Applying the restricted smoothness property, this also gives us that:

E [f (θT)− f (θ∗)] ≤ ε+
2σ2

α
.

which is what we wanted.

A.4 Finding a Sparse Nearly-Stationary Point
For simplicity, we first prove the deterministic version of the theorem, where σ = 0. We show how to
extend this proof to the stochastic version in Section A.5.

Proof. The proof is similar to that of Theorem 1, but in addition requires that the algorithm
alternates standard IHT steps with optimizing inside the support of the iterate. More precisely given
a current iterate supported at S, we additionally run an inner loop which optimizes only over the
coordinate in S, seeking a near stationary point θ such that ‖∇f (θ)S‖ ≤ ε. Thus in our analysis
we can assume that before performing a gradient, followed by a pruning step, our current iterate
supported at S satisfies ‖∇f (θ)S‖ ≤ ε. Hence following the previous analyses and setting η = 1/β,
we have:

f
(
θ′
)
≤ f (θ) +

1

2η

(∥∥∥(θ − η∇f (θ))S\S′
∥∥∥2 − ‖η∇f (θ)S∪S′‖

2

)
≤ f (θ) +

1

2η

(
2
∥∥θS\S′∥∥2 + 2η2ε2 − ‖η∇f (θ)‖2∞

)
.

For the second inequality we first applied triangle inequality together with the near stationarty
condition for θ to bound∥∥∥(θ − η∇f (θ))S\S′

∥∥∥ ≤ ∥∥θS\S′∥∥+
∥∥∥η∇f (θ)S\S′

∥∥∥ ≤ ∥∥θS\S′∥∥+ ηε ,

then applied (a+ b)2 ≤ 2a2 + 2b2. In addition we used the fact that

‖∇f (θ)S∪S′‖∞ = ‖∇f (θ)‖∞ .

This follows from a simple case analysis. If one of the coordinates of the gradient with the largest
absolue value lies in S ∪ S′, we are done. Otherwise, we have two possibilities. Either S′ is different
from S, so S ∪S′ contains one coordinate outside of S. Since these coordinates are obtained by hard
thresholding and θ is supported only at S, the absolute value of ∇f (θ) at the largest coordinate in
S′ \ S must be at least as large as the largest in S∗ \ S, which yields our claim. Otherwise we have
that S = S′, which means that the pruning step did not change the support, and thus∥∥η∇f (θ)S

∥∥
∞ ≤ min

i∈S
|θ − η∇f (θ)|i ≤ R∞ (k) + ηε

which guarantees that

‖∇f (θ)‖∞ = max
{
‖∇f (θ)S‖∞ ,

∥∥∇f (θ)S
∥∥
∞
}

≤ max

{
ε, ε+

R∞ (k)

η

}
= ε+ βR∞ (k) ,

and so we are done.
24

In the former case we thus see that

η

2
‖∇f (θ)‖2∞ ≤ f (θ)− f

(
θ′
)

+

(∥∥θS\S′∥∥2
η

+ ηε2

)
≤ f (θ)− f

(
θ′
)

+

(
kR∞ (k)2

η
+ ηε2

)
.

Telescoping over T iterations we see that

η

2

T−1∑
t=0

‖∇f (θt)‖2∞ ≤ f (θ0)− f (θT) + T ·

(
kR∞ (k)2

η
+ ηε2

)
and so returning a random point θ among those witnessed during the algorithm we have

E
[
‖∇f (θ)‖2∞

]
≤ 2 (f (θ0)− f (θT))

ηT
+ 2

(
kR∞ (k)2

η2
+ ε2

)
By AM-QM,

E [‖∇f (θ)‖∞] ≤
√
E
[
‖∇f (θ)‖2∞

]
,

which enables us to conclude that after sufficiently many iterations we are guaranteed to find a point
such that

‖∇f (θ)‖∞ = O

(
R∞ (k)

√
k

η
+ ε

)
= O

(
βR∞ (k)

√
k + ε

)
.

A.5 Deferred Proofs
Proof of Lemma 1. Our proofs crucially rely on the following lemma. Intuitively it shows that
projecting a vector θ onto the non-convex set of sparse vectors does not increase the distance to the
optimum by too much. While this is indeed always true for projections onto convex sets, in this case
we can provably show that the possible increase in distance is small.

Proof. We have that the function

h(k) =
‖Tk (θ)− θ‖2

n− k
is non-increasing. Indeed, using more nonzeros can only decrease the ratio. Thus

‖Tk (θ)− θ‖2

n− k
≤ ‖Tk

∗ (θ)− θ‖2

n− k∗
≤ ‖θ

∗ − θ‖2

n− k∗
,

where the last inequality follows from the fact that among all k-sparse vectors, Tk (θ) minimizes the
distance to θ.

Proof of Theorem 1 (stochastic version). Next we extend the proof of Theorem 1 to the case
when only stochastic gradients are available.

Proof. Similarly to before we can write

f
(
θ′
)
≤ f (θ) +

β

2

∥∥∥∥ 1

β
∇f (θ) + (Tk (θ − ηgθ)− θ)

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
β

2

∥∥∥∥(Tk (θ − ηgθ)−
(
θ − 1

β
∇f (θ)

))
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2

25

≤ f (θ) +
β

2

(
‖(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′‖+

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥)2

− 1

2β
‖∇f (θ)S∪S′‖

2

≤ f (θ) + β ‖(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′‖
2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2

= f (θ) + β
∥∥∥(θ − ηgθ)S\S′

∥∥∥2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2 .

Next we apply Corollary 2 to further bound∥∥∥(θ − ηgθ)S\S′
∥∥∥2 ≤ 2 |S∗|+ |supp (θ∗)|

|S′| − |supp (θ∗)|
· ‖(θ − ηgθ)T − θ

∗‖2 − ‖η (gθ)S∗‖
2 + ‖η (gθ)S∪S′‖

2

=
3k∗

k − k∗
· ‖(θ − ηgθ)T − θ

∗‖2 − ‖η (gθ)S∗‖
2 + ‖η (gθ)S∪S′‖

2 ,

where |T | ≤ 3k∗ + k. Thus

f
(
θ′
)
≤ f (θ) + β

(
3k∗

k − k∗
· ‖(θ − ηgθ)T − θ

∗‖2 − ‖η (gθ)S∗‖
2 + ‖η (gθ)S∪S′‖

2

)
+ β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2 .

Taking expectations, and applying Lemma 5 we see that

E
[
f
(
θ′
)
− f∗|θ

]
≤ E [f (θ)− f∗|θ]

+ β

(
3k∗

k − k∗
· ‖(θ − η∇f (θ))T − θ

∗‖2 − ‖η∇f (θ)S∗‖
2 + ‖η∇f (θ)S∪S′‖

2

)
+ β

∥∥∥∥(η∇f (θ)− 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2 + 2βη2σ2

= E [f (θ)− f∗|θ] + β

(
3k∗

k − k∗
· ‖(θ − η∇f (θ))T − θ

∗‖2 − ‖η∇f (θ)S∗‖
2

)
+ ‖∇f (θ)S∪S′‖

2

(
βη2 + β

(
η − 1

β

)2

− 1

2β

)
+ 2βη2σ2

≤ E [f (θ)− f∗|θ] + β

(
3k∗

k − k∗
· ‖(θ − η∇f (θ))T − θ

∗‖2 − ‖η∇f (θ)S∗‖
2

)
+ 2βη2σ2 ,

where the last inequality follows from setting η = 1
2β , which makes βη2 + β

(
η − 1

β

)2
− 1

2β = 0.

Finally, repeating the argument used for the deterministic proof in Section A.2, we further bound

E
[
f
(
θ′
)
− f∗|θ

]
≤ f (θ)− f∗ + β

(
3k∗

k − k∗
· 8

α
(f (θ)− f (θ∗))− η2 · α

2
(f (θ)− f (θ∗))

)
+ 2βη2σ2

= (f (θ)− f∗)
(

1 +
24k∗

k − k∗
· β
α
− βη2α

2

)
+ 2βη2σ2

= (f (θ)− f∗)
(

1 +
24k∗

k − k∗
· β
α
− α

8β

)
+
σ2

2β
.

26

Setting k = k∗ ·
(

384
(
β
α

)2
+ 1

)
we have 24k∗

k−k∗ ·
β
α ≤ 24 · 1

384·(β/α)2 ·
β
α = 1

16 ·
α
β , so

E
[
f
(
θ′
)
− f∗|θ

]
≤ (f (θ)− f∗)

(
1− α

16β

)
+
σ2

2β
.

Thus for as long as
σ2

2β
≤ (f (θ)− f∗) · α

32β
⇐⇒ f (θ)− f∗ ≥ 16 · σ

2

α
one has that

E
[
f
(
θ′
)
− f∗|θ

]
≤ (f (θ)− f∗)

(
1− α

32β

)
.

Taking expectation over the entire history, this shows that after T = O
((

β
α

)
ln f(θ0)−f∗

ε

)
iterations

we obtain an iterate θT such that

E [f (θT)− f∗] ≤ ε+
16σ2

α
,

which concludes the proof.

Proof of Theorem 3 (stochastic version). We also provide the proof for the stochastic version
of Theorem 3.

Proof. We follow the steps of the proof provided in Section A.4. More precisely we write:

f
(
θ′
)
≤ f (θ) +

β

2

∥∥∥∥ 1

β
∇f (θ) + (Tk (θ − ηgθ)− θ)

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
β

2

∥∥∥∥(Tk (θ − ηgθ)−
(
θ − 1

β
∇f (θ)

))
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2

≤ f (θ) +
β

2

(
‖(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′‖+

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥)2

− 1

2β
‖∇f (θ)S∪S′‖

2

≤ f (θ) + β ‖(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′‖
2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2

= f (θ) + β
∥∥∥(θ − ηgθ)S\S′

∥∥∥2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β
‖∇f (θ)S∪S′‖

2 ,

where we used the inequality (a+ b)2 ≤ 2a2 + 2b2. Applying Lemma 5 and using the fact that
‖∇f (θ)S‖ ≤ ε, we see that setting η = 1/β we obtain:

E
[
f
(
θ′
)]
≤ f (θ) + β

(∥∥∥(θ − η∇f (θ))S\S′
∥∥∥2 + σ2

)
+ β

(∥∥∥∥((η − 1

β

)
∇f (θ)

)
S∪S′

∥∥∥∥2 + σ2

)
− 1

2β
‖∇f (θ)S∪S′‖

2

≤ f (θ) + 2β

(∥∥θS\S′∥∥2 +
ε2

β2
+ σ2

)
− 1

2β
‖∇f (θ)S∪S′‖

2

≤ f (θ) + 2β

(
kR∞

(
β−1, k

)2
+
ε2

β2
+ σ2

)
− 1

2β
‖∇f (θ)‖2∞ ,

27

where again we used the fact that ‖∇f (θ)S∪S′‖∞ = ‖∇f (θ)‖∞, unless ‖∇f (θ)‖∞ ≤
R∞(η,k)

η =

βR∞
(
β−1, k

)
. Thus, telescoping over T iterations we see that

1

2β

T−1∑
t=0

‖∇f (θt)‖2∞ ≤ f (θ0)− f (θT) + T · 2β
(
kR∞

(
β−1, k

)2
+ β−2ε2 + σ2

)
and so returning a random point θ among those witnessed during the algorithm we have

E
[
‖∇f (θ)‖2∞

]
≤ 2β (f (θ0)− f (θT))

T
+ 2

(
β2kR∞

(
β−1, k

)2
+ ε2 + β2σ2

)
By AM-QM,

E [‖∇f (θ)‖∞] ≤
√
E
[
‖∇f (θ)‖2∞

]
which enables us to conclude that after sufficiently many iterations we are guaranteed to find a point
such that

‖∇f (θ)‖∞ = O
(
βR∞ (η, k)

√
k + βσ + ε

)
.

Miscellaneous Proofs.

Lemma 5. Let σ > 0 and let gθ be a stochastic gradient satisfying standard conditions:
E[gθ|θ] = ∇f(θ)],

and
E[‖gθ −∇f(θ)‖2] ≤ σ2 .

Then for any vector a ∈ RN and any subset S of coordinates:

‖(∇f (θ) + a)S‖
2 ≤ E

[
‖(gθ + a)S‖

2

∣∣∣∣θ] ≤ ‖(∇f (θ) + a)S‖
2 + σ2 .

Proof. We expand the norm under the expected value as:

E
[
‖(gθ + a)S‖

2

∣∣∣∣θ] = E
[
‖(∇f (θ) + a)S + (gθ −∇f (θ))S‖

2

∣∣∣∣θ]
= E

[
‖(∇f (θ) + a)S‖

2 + ‖(gθ −∇f (θ))S‖
2 + 2 〈(∇f (θ) + a)S , (gθ −∇f (θ))S〉

∣∣∣∣θ]
= ‖(∇f (θ) + a)S‖

2 + E
[
‖(gθ −∇f (θ))S‖

2

∣∣∣∣θ]
+ E

[
2 〈(∇f (θ) + a)S , (gθ −∇f (θ))S〉

∣∣∣∣θ]
≤ ‖(∇f (θ) + a)S‖

2 + σ2 .

From the the chain of equalities above, we can trivially lower bound the expectation by
‖(∇f (θ) + a)S‖

2 , which gives us what we needed.

A crucial step in the proof of Theorem 1 requires upper bounding the `2 distance to the closest
global optimizer by the difference in function value. In general, it is known that this is implied
by the Polyak-Łojasiewicz condition, and so it automatically holds for the stronger concentrated
Polyak-Łojasiewicz condition. We reproduce the proof from [KNS16] for completeness.

28

Lemma 6. (From Polyak-Łojasiewicz to quadratic growth) Let f : RN → R be a function satisfying
the Polyak-Łojasiewicz inequality

‖∇f (θ)‖2 ≥ α

2
(f (θ)− f∗) .

Then there exists a global minimizer θ∗ of f such that

f (θ)− f∗ ≥ α

8
‖θ − θ∗‖2 .

Proof. Let g (θ) =
√
f (θ)− f∗ for which we have

∇g (θ) =
1

2
√
f (θ)− f∗

∇f (θ) .

Using the PL condition we have

‖∇g (θ)‖2 =
1

4 (f (θ)− f∗)
· ‖∇f (θ)‖2 ≥ 1

4 (f (θ)− f∗)
· α

2
· (f (θ)− f∗) =

α

8
.

Now starting at some θ0, we consider the dynamic θ̇ = −∇g (θ). We see that this always decreases
function value until it reaches some θT for which ∇g (θT) = 0 and hence by the PL inequality, θT is
a minimizer i.e. f (θT) = f∗. Now we can write

g (θT) = g (θ0) +

∫ T

0

〈
∇g (θt) , θ̇t

〉
dt = g (θ0) +

∫ T

0
〈∇g (θt) ,−∇g (θt)〉 dt

= g (θ0)−
∫ T

0
‖∇g (θt)‖2 dt .

Thus

g (θ0)− g (θT) =

∫ T

0
‖∇g (θt)‖2 dt ≥

√
α

8
·
∫ T

0
‖∇g (θt)‖ dt =

√
α

8
·
∫ T

0

∥∥∥θ̇t∥∥∥ dt ,
where we used our lower bound on the norm of ∇g (θ). Finally, we use the fact that the last integral
lower bounds the total movement of θ as it moves from θ0 to θT . Thus∫ T

0

∥∥∥θ̇t∥∥∥ dt ≥ ‖θ0 − θT ‖ ,
so

g (θ0)− g (θT) ≥
√
α

8
‖θ0 − θT ‖ ,

which enables us to conclude that

f (θ0)− f∗ ≥
α

8
‖θ0 − θT ‖2 ,

where θT is some global minimizer of f . This concludes the proof.

B Additional Experiments
B.1 ResNet50 on ImageNet
Performance of dense models. The AC/DC method has an advantage over other pruning
methods of obtaining both sparse and dense models. The performance of the dense baseline can be
recovered after fine-tuning the resulting AC/DC dense model, for a small number of epochs. Namely,
we start from the best dense baseline, which is usually obtained after 85 epochs, and replace the
final compression phase of 15 epochs with regular dense training; we use the same learning rate

29

scheduler and keep all other training hyper-parameters the same. For 80% sparsity we recover the
dense baseline accuracy completely, while for 90% we are slightly below the baseline by 0.3%. We
note that for 90% sparsity, when the first and last layers are dense, our fine-tuned dense model
recovers the baseline accuracy fully. The results for the dense models, together with the baseline
accuracy, are presented in Table 6, where (?) denotes that the first and last layers of the network are
dense.

Table 6: AC/DC Dense ResNet50

Target
Sparsity

Accuracy
Dense (%)

Accuracy
Finetuned (%)

0% 76.84 -
80% 73.82± 0.02 76.83± 0.07
90% 73.25± 0.16 76.56± 0.1
90%? 73.66 76.85

Table 7: AC/DC Dense MobileNetV1

Sparsity Accuracy
Dense (%)

Accuracy
Finetuned (%)

0% 71.78 -
75% 68.55± 0.2 71.63± 0.1
90% 67.47± 0.13 70.86± 0.08
90%? 68.27 70.97

Moreover, an interesting property of AC/DC is that the resulting dense networks have a small
percentage of zero-valued weights, as shown in Table 8. This is most likely caused by “dead” neurons
or convolutional filters resulted after each compression phase; the corresponding weights do not get
re-activated during the dense stages, as they can no longer receive gradients. This can be easily seen
particularly for high sparsity (95% and 98%) where a non-trivial percentage of the weights remain
inactive.

Dynamics of masks and FLOPs during training. The mask dynamics, measured by the
relative change between two consecutive compression masks, have an important influence on the
AC/DC training process. Namely, more changes between consecutive compression masks typically
imply more exploration of the weights’ space, and faster recovery from sub-optimal pruning decision,
which in turn results in more accurate sparse models. As can be seen in Figure 2b, the relative mask
difference between consecutive compression phases decreases during training, but it is critical to be
maintained at a non-trivial level. For completeness, we also included the evolution of the validation
accuracy during AC/DC training, for all sparsity levels (please see Figure 2a); at 98% sparsity in
particular, it is easiest to see that dense phases enable the exploration of better pruning masks,
which ensure that the sparse model improves continuously during training.

Despite the dynamics of the compression masks, we noticed that the sparsity distribution does
not change significantly. This can be observed from the number of inference FLOPs per sample,
at the end of each compression phase, in Figure 4a. Interestingly, as training progresses, AC/DC
also induces structured sparsity, as more neurons and convolutional filters get pruned. This was
previously discussed in more detail (see Table 8), but can also be deduced from the decreasing
inference FLOPs at the end of each dense phase, as shown in Figure 4b.

AC/DC with uniform pruning. As discussed, for example, in [SA20], global magnitude pruning
usually performs better than its uniform counterpart. Interestingly, with global magnitude pruning
later layers (which also tend to be the largest) are pruned the most. Moreover, we did not encounter
convergence issues caused by entire layers being pruned, as hypothesized in some previous work
[EGM+20, JPR+20]. However, one concern related to global magnitude pruning is a potential FLOP
inefficiency of the resulting models; in theory, this would be a consequence of the earlier layers being
pruned the least. For this reason, we performed additional experiments with AC/DC at uniform
sparsity, with the first and last layers dense (as commonly used in the literature [EGM+20, JPR+20]).

30

(a) Test FLOPs after each sparse phase (b) Test FLOPs after each dense phase

Figure 4: Dynamics of sparse and dense inference FLOPs for ImageNet on ResNet50, as a percentage
of the dense baseline FLOPs

Table 8: Accuracy, sparsity, inference FLOPs and percentage of inactive weights for the resulting
AC/DC dense models on ResNet50 (before fine-tuning, one seed).

Target
Sparsity

Top-1
Accuracy (%)

Inference
FLOPs

Inactive
Weights (%)

80 73.8 0.98× 3.2
90 73.2 0.93× 10.5
95 72.9 0.84× 22.05
98 70.8 0.66× 49.78

Our results show that there are no significant differences compared to AC/DC with global magnitude
pruning. However, keeping the first and last layers dense significantly improves the results with
global magnitude pruning. These observations emphasize that AC/DC is an easy-to-use method
which works reliably well with different pruning criteria. For complete results, please see Table 9.

Direct comparison with Top-KAST. As previously highlighted, Top-KAST is the closest to us,
in terms of validation accuracy, out of existing sparse training methods. However, for the results
reported, the authors kept the first convolutional and final fully-connected layers dense. To obtain a
fair comparison, we used AC/DC on the same sparse distribution, and for 90% sparsity over the
pruned layers (82.57% overall network sparsity), our results improved significantly. Namely, the best
sparse model reached 75.64% validation accuracy (0.6% increase from the results in Table 2), while

Table 9: AC/DC with uniform vs global magnitude pruning on ResNet50 (one seed), where (?)
denotes that the first and last layers are dense.

Sparsity
Distribution

Target
Sparsity(%)

Global
Sparsity(%)

Top-1
Accuracy (%)

FLOPs
Inference

global 90 89.8 75.14 0.19×
global? 90 82.6 75.64 0.21×
uniform? 90 82.6 75.04 0.13×

global 95 94.8 73.15 0.12×
global? 95 87.2 74.16 0.14×
uniform? 95 87.2 73.28 0.08×

31

Table 10: Comparison with Top-KAST when pruning all layers (ResNet50)

Method Sparsity (%) Backward
Sparsity (%)

Sparse Top-1
Accuracy (%)

AC/DC 80 80 / 0 76.3± 0.1
Top-KAST 80 0 75.64
Top-KAST 80 50 74.78
Top-KAST 80 80 72.19

AC/DC 90 90 / 0 75.03± 0.1
Top-KAST 90 0 74.42
Top-KAST 90 50 74.09
Top-KAST 90 80 73.07

the accuracy of the best dense model was 76.85% after fine-tuning. For more details, we also provide
in Table 10 the results for Top-KAST when all layers are pruned, as they were provided to us by the
authors. Notice that AC/DC surpasses even Top-KAST with dense back-propagation, which has
limited computational savings during training.

It is important to note, however, that because of its flexibility in choosing the gradients density,
Top-KAST can theoretically obtain significantly better training speed-ups than AC/DC, the latter
being constrained by its dense training phases. This allows Top-KAST to improve the accuracy of
the models by increasing the number of training epochs, while still enabling (theoretical) training
speed-up. We present in Table 11 another comparison between AC/DC and Top-KAST, when the
training time for the latter is increased 2 or 5 times; for all results (which were provided to us by the
authors), the first and last layers for Top-KAST are dense. When comparing with AC/DC with all
layers pruned, Top-KAST obtains better results at 98% and 95% sparsity, with increased training
epochs. However, when using the same sparse distribution as Top-KAST (not pruning the first and
last layers), the results for AC/DC at 95% and 98% sparsity are significantly better than Top-KAST
with increased steps. For all the results reported on AC/DC the number of training steps was fixed
at 100 epochs.

We note that the results obtained with AC/DC can be improved as well with increased number
of training epochs. As an example, when using the same sparsity schedule extended over 150 epochs,
the best sparse model obtained with AC/DC on 90% sparsity reached 75.99% accuracy, using
fewer training FLOPs compared to the original dense baseline trained on 100 epochs (namely 87%).
Furthermore, when we fine-tune the dense model by replacing the final 15 epochs compression phase
with dense training, we obtain a dense model with 76.95% accuracy, higher than the original dense
baseline.

B.2 MobileNet on ImageNet
Performance of dense models. Similar to ResNet50, we observed that dense models obtained
with AC/DC are able to recover the baseline accuracy after additional fine-tuning. We performed
fine-tuning identically to the ResNet50 experiments and observe that AC/DC models obtained with
a 75% target sparsity recovered the baseline accuracy, while for 90% the gap is just below 1%. We
present results for the (fine-tuned) dense models in Table 7, where (?) indicates that the first layer
and depth-wise convolutions were never pruned.

32

Table 11: Comparison with Top-KAST with increased training steps (ResNet50). (?) indicates that
the first and last layers are dense for AC/DC, while this is the case for all Top-KAST results.

Method Sparsity
(%)

Backward
Sparsity (%)

Sparse Top-1
Accuracy (%)

Train
FLOPs (%)

Inference
FLOPs (%)

AC/DC 80 80 / 0 76.3± 0.1 0.65× 0.29×
Top-KAST1× 80 0 75.59 0.48× 0.23×
Top-KAST1× 80 60 74.59 0.29× 0.23×
Top-KAST2× 80 0 76.11 0.97× 0.23×
Top-KAST2× 80 60 75.29 0.58× 0.23×

AC/DC 90 90 / 0 75.03± 0.1 0.58× 0.19×
AC/DC? 90 90 / 0 75.64 0.6× 0.21×

AC/DC? unif. 90 90/0 75.04 0.55× 0.13×
Top-KAST1× 90 0 74.65 0.42× 0.13×
Top-KAST1× 90 80 73.03 0.16× 0.13×
Top-KAST2× 90 0 75.35 0.84× 0.13×
Top-KAST2× 90 80 74.16 0.32× 0.13×

AC/DC 95 95 / 0 73.14± 0.2 0.53× 0.12×
AC/DC? 95 95 / 0 74.16 0.54× 0.14×

AC/DC? (unif) 95 95 / 0 73.28 0.51× 0.08×
Top-KAST1× 95 0 71.83 0.39× 0.08×
Top-KAST1× 95 90 70.42 0.1× 0.08×
Top-KAST2× 95 0 73.29 0.77× 0.08×
Top-KAST2× 95 90 72.42 0.19× 0.08×
Top-KAST5× 95 0 74.27 1.94× 0.08×
Top-KAST5× 95 90 73.17 0.48× 0.08×

AC/DC 98 98 / 0 68.44± 0.09 0.46× 0.06×
AC/DC? 98 98 / 0 71.27 0.48× 0.09×

Top-KAST1× 98 90 67.06 0.08× 0.05×
Top-KAST1× 98 95 66.46 0.06× 0.05×
Top-KAST2× 98 90 68.99 0.15× 0.05×
Top-KAST2× 98 85 68.87 0.12× 0.05×

33

0 10 20 30 40 50 60 70 80 90 100
Epoch

20

30

40

50

60

70

Va
lid

at
io

n
Ac

c.
 (%

)

75 % Sparsity
90 % Sparsity
Compressed
Decompressed

(a) Sparsity pattern and test accuracy

20 30 40 50 60 70 85
Epoch

5

10

15

20

M
as

k
di

ffe
re

nc
e

(%
) 75 %

90 %

(b) Relative change in consecutive masks

Figure 5: Validation accuracy and sparsity during training, together with differences in consecutive
masks for ImageNet with MobileNetV1 using AC/DC.

Masks dynamics. Similar to ResNet50, the change between consecutive AC/DC compression
masks plays an important role in obtaining accurate sparse models on MobileNet. As shown in
Figure 5b, the compression masks stabilize as training progresses. For completeness, we also illustrate
the evolution of the validation accuracy during AC/DC training on MobileNet, at 75% and 90%
sparsity, in Figure 5a.

Comparison with RigL. We note that the results obtained by RigL [EGM+20] improve significantly
when increasing the number of training steps 2 or 5 times. Moreover, for all results reported with
RigL on MobileNet the first convolutional layer and all depth-wise convolutions are dense, whereas
we do not impose such restrictions on our sparse model. Our results can further be improved by
using the same sparsity distribution; namely, for 90% sparsity over the pruned parameters (88.57%
overall sparsity), the best sparse model obtained with AC/DC achieved 66.56% accuracy (0.5%
improvement), while the best dense improved from 67.64% to 70.97% after fine-tuning. In Table 12
we present results for AC/DC and RigL at 75% and 90% sparsity, when the latter is trained over
the same number of epochs, or with 2x or 5x the number of passes through the training data. We
conclude that AC/DC has very similar validation accuracy to RigL2×. For 75% sparsity, AC/DC
achieves similar performance with significantly fewer training and inference FLOPs than RigL. At
90% sparsity, AC/DC and RigL2× are close in terms of both validation accuracy and training
FLOPs; however, the validation accuracy of AC/DC can be improved by almost 0.5% when the first
and depth-wise convolutional layers are kept dense. We note that RigL5× has significantly higher
validation accuracy, and for 75% sparsity it even matches the baseline; however, this variant of RigL
also uses 2.6× and 1.5× the dense baseline training FLOPs for 75% and 90% sparsities, respectively,
which makes it impractical due to its high computational training cost.

B.3 Inference Speedups
We now examine the potential for real-world speedup of models produced through our framework.
For this, we use the CPU-based inference framework of [Dee21], which supports efficient inference
over unstructured sparse models, and is free to use for non-commercial purposes. Specifically, we
export our Pytorch-trained models to the ONNX intermediate format, preserving weight sparsity,
and then execute inference on a subset of samples, at various batch sizes, measuring time per
batch. We execute on an Intel i9-7980XE CPU with 16 cores and 2.60GHz core frequency. We
simulate two scenarios: the first is real-time inference, i.e. samples are processed one at a time, in
a resource-constrained environment, using only 4 cores. The second is batch inference, for which
we pick batch size 64, in a cloud environment, for which we use all 16 cores. We measure average

34

Table 12: Comparison between AC/DC and RigL on MobileNet, where (?) denotes that the first
and depth-wise convolutions were kept dense.

Method Sparsity (%) Top-1
Accuracy (%)

Inference
FLOPs

Train
FLOPs

AC/DC 75 70.3 0.35× 0.65×
AC/DC? 75 70.41 0.37× 0.66×

RigL? (ERK) 75 68.39 0.52× 0.52×
RigL?2×(ERK) 75 70.49 0.52× 1.05×
RigL?5×(ERK) 75 71.9 0.52× 2.63×

AC/DC 90 66.08 0.19× 0.57×
AC/DC? 90 66.56 0.22× 0.58×

RigL?(ERK) 90 63.58 0.27× 0.29×
RigL?2×(ERK) 90 65.92 0.27× 0.59×
RigL?5×(ERK) 90 68.1 0.27× 1.47×

Table 13: Time per batch (milliseconds) using a sparse inference engine [Dee21].

Model/Setup Real-Time Inference, 4 cores Batch 64 Inference, 16 cores

ResNet50 ONNXRT v1.6 14.773 329.734
ResNet50 Dense 15.081 285.958

ResNet50 90% Pruned 9.46 124.193
ResNet50 90% Unif. Pruned 8.495 116.897

MobileNetV1 ONNXRT v1.6 2.552 80.748
MobileNetV1 Dense 2.513 55.845

MobileNetV1 Pruned 75% 1.96 40.976
MobileNetV1 Pruned 90% 1.468 34.909

time per batch for the sparse models against dense baselines, for which we use both the Deepsparse
engine, and the ONNX runtime (ONNXRT). We present the average over 10 runs. The variance is
extremely low, so we omit it for readability.

We now briefly discuss the results. First, notice that the dense baselines offer similar performance
for real-time inference, but that the Deepsparse engine has a slight edge at batch 64. We will therefore
compare against its timings below. The results show a speedup of 1.6x for the 90% global-pruned
ResNet50 model, and 1.8x for the uniformly pruned one: the uniformly-pruned model is slightly
faster, which correlates with its lower FLOP count due to the uniform pruning pattern. This pattern
is preserved in MobileNetV1 experiments, although the speedups are relatively lower, since the
architecture is more compact. We note that the speedups are more significant for batched inference,
where the engine has more potential for parallelization, and our setup uses more cores.

B.4 Sparse-Dense Output Comparison
To the best of our knowledge, our results are the first ones to show that both a dense and a sparse
model can be trained jointly. Although other sparse training techniques such as RigL or Top-KAST
can train sparse models faster, none of them offer the additional benefit of an accurate dense model.

35

Table 14: Comparison with Variational Dropout on ResNet50

Method Sparsity Sparse Top-1
Accuracy (%)

Dense Top-1
Accuracy (%)

Sparse-Dense
Agreement (%)

Sparse-Dense
Cross-entropy

AC/DC 79.83% 76.3± 0.1 76.8± 0.07 89.8± 0.3 0.85± 0.005
SparseVD 80% 75.3 75.2 98.6 -
GMP 79.83% 76.4 76.9 86.0 1.03

AC/DC 89.8% 75.0± 0.1 76.6± 0.09 86.8± 1.5 1.02± 0.004
SparseVD 90% 73.8 73.6 98.3 -
GMP 89.8% 74.7 76.9 83.5 1.29

One method that does generate sparse-dense model couples is Sparse Variational Dropout
(SparseVD) [MAV17]; there, after training a dense model with variational inference, a large proportion
of the weights can be pruned in a single step, without affecting the accuracy of the dense model.
(We note however that Sparse Variational Dropout doubles the FLOP cost of training, due to the
variational parameters.) However, our investigation of the SparseVD models trained by [GEH19]
shows that the sparse and dense models agree in over 98% of their predictions as measured on the
ImageNet validation set, and are of no better quality than the sparse model - if anything, they are
slightly worse. Please see Table 14 for complete results.

In comparison, AC/DC with finetuning produces dense models of validation accuracy that is
comparable to that of a dense model trained without any compression, and that therefore do differ
from their sparse co-trained counterparts. To understand the relative sizes of these differences, we
used GMP pruning as the baseline. In particular, we compared the similarity of a fully trained
dense model with GMP trained over 100 epochs. We note AC/DC and GMP show comparable
accuracy for both their sparse and dense models in this scenario; however, the total training epochs
are substantially lower for producing these models with AC/DC.

We use two metrics to investigate the difference in sparse-dense model pairs: the proportion of
validation examples on which the top prediction agreed between the two models, and the average
cross-entropy of the predictions across all validation examples. In both metrics, Table 14 shows
that model similarity is higher for 80% sparsity than 90%, and higher for AC/DC than GMP
training: in particular, sparse/dense cross-entropy is about 20% lower for AC/DC, and the number
of top-prediction disagreements is about 25% lower for AC/DC at 90% sparsity, and 37% lower for
AC/DC at 80% sparsity.

B.5 Memorization Experiments on CIFAR10
In what follows, we study the similarities between the sparse and dense models learned with AC/DC,
on the particular setup of memorizing random labels. Specifically, we select 1000 i.i.d. training
samples from the CIFAR10 dataset and randomly change their labels. We train a ResNet20 model
using AC/DC, at various target sparsity levels, ranging from 50% to 95%. We use SGD with
momentum, weight decay, and initial learning rate 0.1 which is decayed by a factor of 10 every 60
epochs, starting with epoch 65.

Using data augmentation dramatically affects the memorization of randomly-labelled training
samples, and thus we differentiate between the two possible cases. Namely, the regular baseline
can easily memorize (in the sense of reaching perfect accuracy) the randomly-labelled samples,

36

10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

100

Ac
c.

(%
)

90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Accuracy on the mis-labelled data

10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

Ac
c.

(%
)-

tru
e

la
be

ls

90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(b) Accuracy on the mis-labelled data (w.r.t. the true
labels)

Figure 6: Accuracy during training with AC/DC at 90% and 95% target sparsity, for 1000 randomly
labelled CIFAR10 images. No data augmentation was applied to the training samples.

when no data augmentation is used; in comparison, with data augmentation memorization is more
difficult, and the accuracy on randomly-labelled samples for the baseline is just above 60%. In
addition to the accuracy on the perturbed samples with respect to their new random labels, we also
track the accuracy with respect to the “true” or correct labels. This differentiation offers a better
understanding regarding where memorization fails and a glimpse into the robustness properties of
neural networks in general, and of AC/DC, in particular.

No data augmentation. As previously mentioned, in this case the baseline model can perfectly
memorize the perturbed data, with respect to their random labels. Interestingly, prior to the initial
learning rate decay, most (≥ 70%) perturbed samples are still correctly classified with respect to
their “true” labels, and memorization happens very quickly after the learning rate is decreased.
In the case of AC/DC with low target sparsity (50% and 75%), memorization has a very similar
behavior to the dense baseline. However, for higher sparsity levels (90% and 95%) we can see a
clear difference between the sparse and dense models. Namely, during each compression phase most
perturbed samples are correctly classified with respect to their true labels, whereas in decompression
phases their random labels are memorized. This phenomenon is illustrated in Figure 6.

Data augmentation. In this case, memorization of the perturbed samples is more difficult, and it
happens later on during training, usually after the second learning rate decrease for the baseline
model. Interestingly, in the case of AC/DC we can see (Figure 7) a clear inverse relationship
between the amount of memorization and the target sparsity. Although low sparsity enables more
memorization, most perturbed samples are still correctly classified with respect to their true labels.
For higher sparsity levels (90% and 95%), most perturbed samples are correctly classified with
respect to their true labels (almost 90%) and very few are memorized. Furthermore, the dense model
resulted from AC/DC training is more robust than the original baseline, as it still learns the correct
labels of the perturbed samples, despite being presented with random ones.

C Computational Details

C.1 FLOPs Computation
When computing FLOPs, we take into account the number of zero-valued weights for linear and
convolutional layers. We also include in our calculations FLOPs for Batch Normalization, Pooling
and ReLU layers, although they have a negligible impact towards the final number. To compute the
FLOPs required for a backward pass over a sample, we use the same convention as RigL [EGM+20];

37

10 30 50 70 90 110 130 150 170 190
Epoch

10

15

20

25

30

35

40

Ac
c.

(%
)

50 % Sparsity
75 % Sparsity
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Accuracy on the mis-labelled data

10 30 50 70 90 110 130 150 170 190
Epoch

50
55
60
65
70
75
80
85
90

Ac
c.

(%
)-

tru
e

la
be

ls

50 % Sparsity
75 % Sparsity
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(b) Accuracy on the mis-labelled data (w.r.t. the true
labels)

Figure 7: Accuracy during training with AC/DC at 50%, 75%, 90% and 95% target sparsity, for
1000 randomly labelled CIFAR10 images. Here, all samples were trained using data augmentation.

namely, if F denotes the inference FLOPs per sample, the number of backward FLOPs is estimated
as B = 2 · F , as we need F FLOPs to backpropagate the error, and additional F to compute the
gradients w.r.t. the weights.

For compression and decompression phases C and D, we consider FC and FD the compression
and decompression inference FLOPs per sample, respectively. We use F to denote the inference
FLOPs per sample for the baseline network. During each compression phase, the training FLOPs
per sample can be estimated as 3 · FC . For decompression phases, we noticed that a small fraction
of weights remain zero, and therefore FD < F . When doing a backward pass we have additional FD
from back-propagating the error, and F extra FLOPs for the gradients with respect to all parameters.
Therefore, we estimate the training FLOPs per sample during a decompression phase as 2 · FD + F .
To obtain the final number of FLOPs, we compute the inference FLOPs on a random input sample,
estimate the backward FLOPs, compute the estimated training FLOPs over all training epochs as
described above, and scale by the number of training samples.

C.2 Choice of Hyper-parameters
Length of compression/decompression phases. AC/DC alternates between compression and
decompression phases to co-train sparse and dense models. It is important to note, however, that the
length of these phases, together with the warm-up and fine-tuning phases, could have a significant
impact on the quality of the resulting models. Before settling on the sparsity pattern we used for all
our ImageNet experiments (see Figure 2a and Figure 5a), we experimented with different lengths
for the sparse/dense phases, but found that ultimately the pattern used in the paper had the best
trade-off between training FLOPs and validation accuracy.

Notably, we experimented on ResNet50, 90% sparsity, with increasing the training epochs to
130 and with different lengths for the compression/decompression phases. For example, we found
that alternating between sparse/dense training every 10 epochs yielded slightly better results after
130 epochs: 75.34% for the sparse model, 76.87% for the fine-tuned dense model; however, this
also had higher training FLOPs requirements (0.7× for the sparse model and 0.9× including the
fine-tuned dense). We additionally experimented with longer dense phases (10 epochs), compared to
sparse phases (5 epochs); this also resulted in more accurate models: 75.45% accuracy for the sparse
model and 76.78% – for the fine-tuned dense model. However, the training FLOPs were substantially
higher: 0.85× for the sparse model and 1.15× for the fine-tuned dense.

38

Due to computational limitations, and to ensure a fair comparison with the dense baseline
and other pruning methods, we decided on using a fixed number of 100 training epochs (the same
used for the dense baseline). In this setup, we did not experiment with other lengths for the
compression/decompression phases other than the ones used in Figure 2a and Figure 5a, but noticed
that having a longer final decompression phase had a positive impact on the fine-tuned dense model.
For instance, when following a sparsity schedule as in Figure 1, the sparse model at 90% sparsity
had a very similar performance to the reported results (75.18% accuracy, from one seed), while the
fine-tuned dense model was significantly below the dense baseline (76.05% validation accuracy). In
general, we advise simplicity in designing the sparsity schedule, by keeping the same length for the
sparse/dense phases. We believe having a short warm-up period and a longer fine-tuning phase
are both beneficial for the sparse model; in our experiments, we only used warm-up phases of 10
epochs, but believe that shorter phases are worth exploring as well. Furthermore, the mask difference
between consecutive compression phases is an important guide for choosing the sparsity schedule: as
it was previously discussed, having a non-trivial difference between the masks typically results in
better sparse models. Illustrations of the pruning masks during training on ImageNet are presented
in Figure 2b and Figure 5b.

When choosing the sparsity schedule for the language models experiments on Transformers-XL,
we followed the same principles as for ImageNet. In fact, the sparsity schedule is very similar to the
one used for ImageNet, scaled by the number of training epochs (48 epochs or 100,000 steps for
Transformers).

In the case of CIFAR100, we used for AC/DC the same number of 200 training epochs as for
the dense baseline. We experimented with sparse/dense phases of lengths 10 or 20, and found that
generally switching every 20 epochs between sparse and dense training yielded the best results.

Training Hyper-parameters for ImageNet. We used the same hyper-parameters for all our
ImageNet experiments, on both ResNet50 and MobileNetV1. Namely, we trained using SGD with
momentum and batch size 256. We used a cosine learning rate scheduler, after an initial warm-up
phase of 5 epochs, when the learning rate was linearly increased to 0.256. The momentum value
was 0.875 and weight decay was 0.00003051757813. These hyper-parameters have the standard
values used in the implementation of STR [KRS+20]. Furthermore, to improve efficiency, we train
and evaluate the models using mixed precision (FP16); the difference in accuracy versus FP32 is
negligible (<0.05%).

Training Hyper-parameters for Transformer-XL. For our Transformer-XL experiments, we
integrated into our code-base the implementation provided by NVIDIA 1, which also follows closely
the original implementation in [DYY+19]. We used the same hyper-parameters for training the large
Transformer-XL model with 18 layers on WikiText-103, including the Lamb optimizer [YLR+19]
with cosine learning rate scheduler.

References
[AHJ+18] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric

Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems, 2018.

[AS20] Kyriakos Axiotis and Maxim Sviridenko. Sparse convex optimization via adaptively regularized

1https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/
Transformer-XL

39

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL

hard thresholding. In International Conference on Machine Learning, pages 452–462. PMLR,
2020.

[AZLS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019.

[BD08] Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations.
Journal of Fourier analysis and Applications, 14(5-6):629–654, 2008.

[Bie20] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

[BKML17] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring:
Training very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

[CHS+16] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

[CMJ+18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An automated end-to-end optimizing
compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018.

[CT06] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425,
2006.

[DCP17] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via
layer-wise optimal brain surgeon, 2017.

[DDJ+20] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger,
Ian Nappier, Meghna Natraj, Shlomi Regev, et al. Tensorflow lite micro: Embedded machine
learning on tinyml systems. arXiv preprint arXiv:2010.08678, 2020.

[Dee21] DeepSparse. Neuralmagic deepsparse inference engine, 2021.

[DYY+19] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019.

[DZ19] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

[EDGS20] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast sparse convnets. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
14629–14638, 2020.

[EGM+20] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. In International Conference on Machine Learning, pages
2943–2952. PMLR, 2020.

[FC18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2018.

[FDRC19] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing
the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

[Fou11] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal
on Numerical Analysis, 49(6):2543–2563, 2011.

40

[Fou12] Simon Foucart. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry
constants. In Approximation Theory XIII: San Antonio 2010, pages 65–77. Springer, 2012.

[GEH19] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[GKD+21] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

[Gra21] Graphcore. Graphcore poplar sdk 2.0, 2021.

[HABN+21] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
deep learning: Pruning and growth for efficient inference and training in neural networks. arXiv
preprint arXiv:2102.00554, 2021.

[Hag94] Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207 – 218, 1994. Backpropagation, Part IV.

[HPN+16] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter
Vajda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural
networks. arXiv preprint arXiv:1607.04381, 2016.

[HPTD15] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections
for efficient neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 1, pages 1135–1143, 2015.

[HSW93] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.

[HZC+17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[JPR+20] Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast:
Top-k always sparse training. Advances in Neural Information Processing Systems, 33:20744–
20754, 2020.

[JTK14] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for
high-dimensional M-estimation. In Proceedings of the 27th International Conference on Neural
Information Processing Systems-Volume 1, pages 685–693, 2014.

[JYFY16] Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Training skinny deep neural
networks with iterative hard thresholding methods. arXiv preprint arXiv:1607.05423, 2016.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[KNS16] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

41

[KRS+20] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pages 5544–5555. PMLR, 2020.

[LAT18] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[LDS90] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pages 598–605, 1990.

[LSB+19] Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model
pruning with feedback. In International Conference on Learning Representations, 2019.

[LZB20] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-
parameterized systems of non-linear equations: the lessons of deep learning. arXiv preprint
arXiv:2003.00307, 2020.

[MAV17] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep
neural networks. In International Conference on Machine Learning, pages 2498–2507. PMLR,
2017.

[MLP+21] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

[MMS+18] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

[MXBS16] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32. 2019.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks,
12(1):145–151, 1999.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[SA20] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33, 2020.

[SCCS19] Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning. arXiv preprint arXiv:1911.08772, 2019.

[SGM20] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 13693–13696, 2020.

[SM20] Alexander Shevchenko and Marco Mondelli. Landscape connectivity and dropout stability of
sgd solutions for over-parameterized neural networks. In International Conference on Machine
Learning, pages 8773–8784. PMLR, 2020.

42

[TKYG20] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information
Processing Systems, 33, 2020.

[Van17] Han Vanholder. Efficient inference with TensorRT. NVIDIA GTC On-Demand. Slides avail-
able at https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=23425-
efficient+inference+with+tensorrt, 2017.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 6000–6010, 2017.

[YLR+19] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training bert in 76 minutes. In International Conference on Learning
Representations, 2019.

[YLZ14] Xiaotong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit for sparsity-
constrained optimization. In International Conference on Machine Learning, pages 127–135.
PMLR, 2014.

[ZBH+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[ZG17] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

[ZMZ+21] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n: M fine-grained structured sparse neural networks from scratch. arXiv
preprint arXiv:2102.04010, 2021.

43

	1 Introduction
	2 Related Work
	3 Alternating Compressed / DeCompressed (AC/DC) Training
	3.1 Background and Assumptions
	3.2 AC/DC: Applying IHT to Deep Neural Networks

	4 Experimental Validation
	4.1 CIFAR-100 Experiments
	4.2 ImageNet Experiments
	4.3 Language Modeling
	4.4 Additional Properties

	5 Conclusion, Limitations, and Future Work
	Appendices
	A Convergence Proofs
	A.1 Overview
	A.2 Stochastic IHT for Non-Convex Functions with Concentrated PL Condition
	A.3 Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity
	A.4 Finding a Sparse Nearly-Stationary Point
	A.5 Deferred Proofs

	B Additional Experiments
	B.1 ResNet50 on ImageNet
	B.2 MobileNet on ImageNet
	B.3 Inference Speedups
	B.4 Sparse-Dense Output Comparison
	B.5 Memorization Experiments on CIFAR10

	C Computational Details
	C.1 FLOPs Computation
	C.2 Choice of Hyper-parameters

