
Pruning for Success

BEST PRACTICES:

Author: Mark Kurtz

Mark Kurtz is the Machine Learning Lead at Neural Magic. He's an

experienced software and machine learning leader with a

demonstrated success in making machine learning models

successful and performant. Mark manages teams and efforts that

ensure organizations realize high returns from their machine

learning investments. He is currently building a "software AI" engine

at Neural Magic, with a goal to bring GPU-class performance for

deep learning to commodity CPUs.

There are numerous algorithms and hyperparameters to choose from when pruning. This can make it

difficult to know where to start, or what to fix when things go wrong.

In this eBook, we provide an overview of the best practices for pruning a model to make the process

easier and better guarantee success.

Additionally, we include an in-depth walkthrough of gradual magnitude pruning (the pruning algorithm

we, and the research community, have found to work the best) and its associated hyperparameters.

-Neural Magic

What is pruning in machine

learning?

Pruning
OverviewPruning is an older concept in the deep learning field, dating back to Yann

LeCun’s 1990 paper Optimal Brain Damage.

It has recently gained a lot of renewed interest, becoming an increasingly

important tool for data scientists. The ability to deploy significantly smaller and

faster models has driven most of the attention, all while minimally affecting (and

in some cases improving) metrics such as accuracy.

Pruning is the process of removing weight connections in a network to increase inference speed and

decrease model storage size. In general, neural networks are very over parameterized. Pruning a network

can be thought of as removing unused parameters from the over parameterized network.

Mainly, pruning acts as an architecture search within the network. In fact, at low levels of sparsity (~40%), a

model will typically generalize slightly better, as pruning acts as a regularizer. At higher levels, the pruned

model will match the baseline. Pushing it further, the model will begin to generalize worse than the baseline,

but with better performance. For example, a well-pruned ResNet-50 model can nearly match the baseline

accuracy on ImageNet at 90% sparsity (90% of the weights in the model are zero).

http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/2004.14340

Performance and Accuracy numbers for a ResNet 50 model trained on ImageNet as

compared to uniform sparsity levels. Accuracy numbers are pulled from The State of Sparsity

in Deep Neural Networks. Performance numbers are generated at FP32 in the Neural Magic

Inference Engine version 1.1.0. Note, uniform sparsity is nonoptimal and used for plotting

simplicity. Adjusting for layerwise effects on loss and performance will give better results.

At the extremes, the sparsity vs. accuracy tradeoff is an

excellent addition to the data scientist’s toolset. Instead of

spending significant amounts of time searching and

training multiple networks to meet the desired deployment

criteria– such as using MobileNet over ResNet – a high

accuracy model can be adjusted using sparsity to meet

performance/deployment criteria.

In fact, scaling up the model size by adding more

channels or layers and then pruning will have net positive

results on the accuracy vs. performance tradeoff curve,

compared to the pruned baseline.

https://arxiv.org/abs/1911.09723

Pruning
Algorithms

Variational dropout

Regularization methods such as L0 or Hoyer

Second-order methods as in Lecun’s original pruning paper or the

WoodFisher approach

Weight reintroduction techniques such as RigL

And gradual magnitude pruning (GMP).

Given the recent, renewed interest in pruning, many algorithms have been

developed in the research community to prune models to higher sparsity levels,

while preserving accuracy. A non-exhaustive list includes:

Comparisons between the existing methods vary, and unfortunately, most papers lack direct and controlled

comparisons. Several papers analyzing the current state of pruning techniques have appeared from Google

and MIT to address this lack of control. The net results list GMP as the clear favorite. It either beats other

approaches outright or matches more complicated methods close enough so that the extra cost and

complexity are not justified.

https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/2003.03033

Our research has found GMP to be one of the best

approaches to use due to its simplicity, ease of use,

and performance on a wide variety of models.

Additionally, GMP allows for very fine control over the

model’s sparsity distribution, something that’s lacking

from most other methods. This control guarantees that

after pruning a model, it will have the desired

performance characteristics.

Finally, using GMP with intelligently selected sparsity

distributions for the model can far exceed other

algorithms.

Figure 1 from The State of Sparsity in Deep Neural Networks comparing the BLEU score

results from pruning a Transformer network for different pruning algorithms.

https://arxiv.org/abs/2004.14340

Structured vs.
Unstructured

PruningMost of the algorithms listed above can be formulated to support structured or

unstructured pruning, but by default, results are generally reported using unstructured.

The difference between the two comes from whether individual weights or groups of

weights are removed together. This difference has not only performance implications but

also affects the maximum achievable sparsity.

Example of a fully connected network that has been pruned unstructured

(left) vs. channel pruned as an example for structured pruning (right). The

faded connections/nodes represent removed/pruned values in the network.

For unstructured pruning, individual weight connections are

removed from a network by setting them to 0. Pruning,

therefore, has the effect of introducing multiplications by 0 into

the network, which can be turned into no-ops at prediction time.

Because of this, software like the Neural Magic Inference

Engine runs pruned networks much faster. Additionally, the

model files can be stored compressed on disk, taking up much

less space.

For structured pruning, groups of weight connections are

removed together, such as entire channels or filters. Thus,

structured pruning has the effect of changing the input and

output shapes of layers and weight matrices. Because of this,

nearly every system can successfully run structurally pruned

networks faster. Unfortunately, structured pruning severely limits

the maximum sparsity that can be imposed on a network when

compared with unstructured pruning, therefore, severely limiting

both the performance and memory improvements.

https://arxiv.org/abs/1510.00149
http://neuralmagic.com/product
https://arxiv.org/abs/1512.08571

From a practical point of view, the reason for this difference is that pruning groups of

weights and even whole channels takes away flexibility. Necessary connections in

channels will have to be pruned away along with unimportant ones.

From a loose theoretical point of view, when pruning channels or filters, the width of

the layer (and overall network) is reduced, pushing the network further away from the

universal approximation theorem and a gaussian approximation.

Thus, we strongly recommend using unstructured whenever possible to better

guarantee the quality of the model for performance and accuracy.

http://www2.math.technion.ac.il/~pinkus/papers/neural.pdf
https://ai.googleblog.com/2020/03/fast-and-easy-infinitely-wide-networks.html

An Intro to Gradual

Magnitude Pruning (GMP)

Begin retraining a network at a slightly higher learning rate than the final one used for the optimizer.

At the start of epoch 1, set the sparsity for all layers to be pruned to 5%.

From there, iteratively remove (set to zero) the weights closest to zero once per epoch until 90% sparsity is reached

at epoch 35.

After this, hold the sparsity constant at 90%, continue training, and reduce the learning rate until epoch 60.

Few algorithms are better than GMP in overall results, and none beat the simplicity of the integration. GMP is

implemented in the following way: a trained network is used and, over several training epochs, the weights closest to

zero are iteratively removed.

For example, pruning a network will typically look like the following (sparsity and epoch values vary based on the model

and training process):

Example of pruning two layers in a neural network using GMP. The x-axis is the number of steps (batches) taken

by the optimizer; the y-axis is the total sparsity for the layer.

https://arxiv.org/abs/1506.02626

GMP and its assumption to remove the weights closest to zero works so well because stochastic gradient descent

(SGD) is self-regularizing. Therefore optimizing using SGD (or any of its derivatives) along with standard L2 or L1

regularization of the weights pushes unused pathways in the optimization space toward zero. We can then safely set

those pathways to zero.

Why not use one-shot pruning, where we cut out all the weights at once instead of over several epochs? Currently, this

does not work well experimentally. For example, when attempting to prune ResNet-50 in one shot to 90% with and

without retraining after, both the validation and training loss drop significantly from baseline. There are two general

reasons for this. First, the correlation of absolute magnitude with the importance of the weights only works at the

extremes. Weights are not ordered perfectly between the ranges due to noise in the process. When applying one-shot

pruning across a network, essential connections are removed. Second, this is a very lossy process as compared to

quantization, for example. When pruning, the information in the network is not compressed; instead, it is completely

removed. Taking steps while pruning allows the network to regularize and adjust weights to better reconverge to the

previous optimization point.

https://www.nature.com/articles/s41467-020-14663-9

GMP Stages
When using GMP, there are three general stages:

Each one is applied immediately after the other. The stages work together to perform an underlying

architecture search on the model and converge to an accurate and performant sparse solution. Each

stage is enumerated below in addition to how long each typically runs.

Stabilization

Pruning

Fine-tuning

Example for the stages and how they apply to the sparsity of one layer of a GMP run on ResNet-50 trained on the

ImageNet dataset. The x-axis is the number of steps (batches) taken by the optimizer; the y-axis is the total

sparsity for the layer. The pruning stage ran from epoch 2 to 37 with a pruning update every epoch starting at 5%

sparsity and ending at 85%. Fine-tuning ran until epoch 57.

Example for the stages and how they apply to the SGD learning rate of a GMP run on ResNet-50

trained on the ImageNet dataset. The x-axis is the number of steps (batches) taken by the optimizer;

the y-axis is the learning rate used with SGD. The learning rate is initially set to 0.01 and adjusted to

0.001 at epoch 43 and 0.0001 at epoch 50.

GMP Stages:
Stabilization,
Pruning, and

Fine-tuning

Stabilization is the first stage. In general, it is short, running for only one or

two epochs. A pretrained network is initialized and a new optimizer is created

with the desired learning rate for pruning (we’ll talk more about learning rates

in a future post). This allows the training process to converge to a stable

point in the optimization space before starting the pruning steps.

Pruning is the second stage, and it generally should be run for a third to a half of your total training

time. For example, a standard pruning stage on ImageNet lasts 35 epochs (compared with 90 for the

original training schedule). With pruning, the sparsity (the number of zeros in a network) is gradually

increased until reaching the desired solution. If you run into issues with your network quickly dropping

loss and not recovering after the fine-tuning stage, try to lengthen your pruning stage.

Fine-tuning is the final stage, and it generally should be run for a little less than one-fourth of the total training time.

For example, a standard fine-tuning stage on ImageNet lasts 20 epochs (compared with 90 for the original training

schedule). With fine-tuning, the model can recover any loss suffered during pruning and ideally converge back to

the unique optimization point. Preferably, multiple learning rate reduction steps should be taken in this stage if using

standard SGD. If you still see the validation loss trending down by the time this stage completes, lengthening and

adding another learning rate reduction step can significantly help.

Given that the model is significantly smaller than the original and therefore regularized, it generally helps to remove

any weight regularization at this point. In internal experiments, we find this can increase the top1 accuracy when

pruning on ImageNet by up to a full percent. The intuition is that the pruned model now has an architecture biased

towards generalization; therefore, we do not want to penalize more complex solutions that are likely to continue

generalizing.

Gradual Magnitude Pruning

(GMP) Hyperparameters

To facilitate the General Magnitude Pruning (GMP) process when pruning a network, several

hyperparameters must be defined. These include general hyperparameters such as learning rate, pruning

update frequency, and pruning schedule function in addition to the sparsity per layer, which we’ll describe in

full detail in Part 4. All hyperparameters affect end level recovery, loss, and performance.

Learning Rate

An important parameter to select is the learning rate to use during the

stabilization and pruning phases. Picking a learning rate that is too high can

quickly lead to the model diverging or failing to train while pruning. Selecting a

learning rate that is too low will fail to regularize the weights properly and will not

allow the pruned model to generalize.

If you are using adaptive techniques in your optimizer, such as with Adam, you should generally

keep the same configuration and learning rate as initially used to train the network. Adaptive

methods can give suboptimal generalization for both training and pruning, though, so we do

recommend using a properly tuned SGD schedule.

For SGD, a learning rate roughly in the middle of your start and end learning rates for the training process works

well. For example, a standard ImageNet training schedule goes through three steps: 0.1, 0.01, and 0.001.

Therefore a typical pruning schedule will run at 0.01 for ImageNet. This is not a hard rule, though; you will need to

adjust your learning rate accordingly. Specifically, if you see a wide generalization gap after finishing pruning

(where training loss is much lower than validation), increasing the learning rate can help. If both the training and

validation loss are higher than the baseline, then decreasing it can help.

After pruning is complete, it is vital to step the learning rate multiple times in the fine-tuning stage (typically by one-

tenth of the previous value for each step). This allows the network to continue to lower the loss function and

generalize as usual. Given that the network is now much smaller, though, the loss function should converge more

quickly than it did in the baseline model. Additionally, since the model is smaller, it can continue to learn at lower

learning rates than did the dense baseline model. Adding a step or two past where it would typically stop for the

baseline training helps significantly.

GMP Hyperparameter #1

https://arxiv.org/abs/1412.6980
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Learning Rate
AnalysisA learning rate analysis can give a rough approximation for the best learning

rate to prune at as well. To run an analysis, start by using the trained model and

a newly constructed optimizer with a small learning rate, such as 1e-9. Continue

the training process to run batches through the optimizer and gradually increase

the learning rate until it reaches or exceeds 1.0. There will be an inflection point

where the model begins to diverge from its trained solution significantly. This

point is generally an ideal learning rate with which to prune the model.

More information on the learning rate analysis can be found in the cyclic learning rate paper.

Additionally, for PyTorch users, an API is available in the neuralmagicML package. Request access

here.

An example learning rate analysis for a model using SGD optimizer. The x-axis is the tested learning

rate (plotted in log scale) and the y-axis is the measured loss. For this analysis, a reasonable learning

rate to prune at would be around 0.003.

https://arxiv.org/abs/1506.01186
https://neuralmagic.com/product-access/

Pruning Update
Frequency

The pruning update frequency defines how often a pruning step is taken between the

start and end of the pruning stage. Updating only once or twice during the whole pruning

process makes it very close to one-shot pruning with retraining (that is, we will cut out

too many essential weights). On the other end, updating after every batch step is both

expensive (the weights are sorted each time to figure out which to cut) and may not allow

the network time to see enough examples to renormalize since the previous cut properly.

Generally, a safe number that works well is stepping once per epoch or a few times per epoch. For the

ImageNet example that prunes over 35 epochs, once per epoch works well. However, if once per epoch ends

with only ten pruning steps, steps should be taken more frequently. A minimum of 30 steps is a good rule to

have in place, and more frequent steps will not hurt, provided it is not after every batch.

GMP Hyperparameter #2

Pruning Schedule
Function

The pruning schedule function is an easy choice and included here for

completeness. The Neural Magic ML Tooling defaults to a cubic function where

early steps are much larger than the final pruning steps in the function.

Experimentally, this works better than a linear function where each step

removes the same amount of weights. In general, this is because as we get

closer to our target sparsity, most of the weights are relatively large. It is

important to allow for more regularization as compared to the number of weights

being cut.

Example of pruning schedule functions: a cubic schedule (left) and a linear schedule (right). The x-axis

represents the normalized steps it would be applied over and the y-axis represents the sparsity.

GMP Hyperparameter #3

Sparsity levels for each layer in a ResNet-50 model for a uniform sparsity configuration as compared to

a bucketed, optimized configuration. Note, the relatively small variations on the layers. These make a

large difference for the recoverability of the model.

GMP Hyperparameter #4:

Sparsity per Layer

Hyperparameter

In addition to the general hyperparameters described above, the sparsity to target per layer is arguably the most

critical hyperparameter you can set. It is the one that controls the amount of performance speedup for a network and

most strongly correlates with the likelihood of accuracy recovery after pruning. The more traditional and older

approach with GMP was to select a uniform sparsity level for all but a few of the intuitively more sensitive layers, such

as the input layer. This assumes that all layers affect the loss and performance equally for the same sparsity levels,

which experimentally has been found to be very far from the truth.

Each layer in a neural network differs in some way, whether it is the input shape, number of parameters, kernel size,

or even the position/purpose of the layer in the overall network. This difference leads to dissimilar effects for each

layer on the total loss and performance of the network. It is challenging to measure these sensitivities to pruning

precisely due to the size of modern-day neural networks. However, there are approaches to estimating both that

match the exact sensitivities reasonably closely. Using these approximations, it becomes much easier to determine

the proper sparsity for each layer in the network and far exceeds the uniform approach.

GMP Hyperparameter #4

Sparsity levels for each layer in a ResNet-50 model for a uniform sparsity configuration as compared to

a bucketed, optimized configuration. Note, the relatively small variations on the layers. These make a

large difference for the recoverability of the model.

Approximating the
Layerwise Loss

SensitivityThe maximum sparsity that can be obtained for each layer without affecting the

loss varies across layers. Despite this, there are some general guidelines that

we have found to work well internally for maximizing the recovery of the loss:

Large fully connected layers can generally be pruned to around 95%.

Large 3×3 convolutions can generally be pruned to around 90%.

Large 1×1 convolutions can generally be pruned to around 80%.

Grouped convolutions or depthwise convolutions generally should not be pruned at all as they are

already structurally pruned.

The general guidelines are only guidelines, though. The proper sparsity for layers deviates quite a bit

depending on the attributes of the layer, architecture of the network, and complexity of the dataset.

Because of these differences, it is much better to estimate the layerwise sensitivity as it pertains to the

loss. There are a few different methods that have surfaced through research to better the

approximations. Several are listed in detail below for completeness; however, we have found the global

magnitude approximation to work best by far.

Global Magnitude
Approximation

The global magnitude approximation is a relatively quick and painless way to

approximate the loss sensitivities for each layer. The assumption is simply that the

magnitude of the weights across the network are ordered correct enough to be

statistically valid when comparing across layers. For example, a layer with larger weights

on average is more sensitive than one with weights closer to zero.

This approach has been used in more complicated methods such as The Lottery Ticket

Hypothesis; however, a thorough study of its effectiveness was provided in a recent

paper by Dan Alistarh, Neural Magic’s research lead.

(Recommended)

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2004.14340

Loss sensitivity analysis using the Global Magnitude Approximation for a ResNet-50 model. A

higher value corresponds to the pruning that layer affecting the loss more.

The approximation generally works because SGD, along

with weight regularization, pushes unimportant weights

globally towards zero. Therefore, layers that are more

overparameterized, as determined by the training process,

will have more weights closer to zero. A general algorithm

for this can be formulated as the following:

“Take the average of the absolute values of the weights

for each layer and then sort them from smallest to largest.

The highest layers are the most sensitive to the loss and

should be pruned less. The lowest layers are the least

sensitive to the loss and should be pruned more.”

APIs as well as scripts are made available in the Neural Magic ML Tooling suite for running the approximation

with support for PyTorch, TensorFlow, and ONNX. Contact us for directions on how to download Neural Magic

ML Tooling and get your hands on on the APIs and scripts.

http://neuralmagic.com/contact

One-Shot
Approximation

The one-shot approximation measures the effect of pruning each layer individually

on the loss function as compared to the baseline without retraining. The concept was

popularized as part of the AMC paper from Song Han’s lab. To implement, each

layer is individually pruned to increasing sparsity levels while measuring the

deviations in the loss/output of the model. All of this can be done running only a few

hundred examples through the model for each step.

So, it is much faster than full retraining; however, it still requires many repeated forward pass executions

of the network. The piecewise integral of the sparsity versus loss curve is then calculated for each layer

with larger values corresponding to higher sensitivity. After sorting these values, the highest layers should

be pruned less, and the lowest layers should be pruned more.

https://arxiv.org/abs/1802.03494

APIs as well as scripts are made available in the Neural Magic ML Tooling suite for running the

approximation with support for PyTorch, TensorFlow, and ONNX. Contact us for directions on how to

download Neural Magic ML Tooling and get your hands on on the APIs and scripts.

Loss sensitivity analysis using the One-Shot Approximation for a ResNet-50 model. A higher value

corresponds to the pruning that layer affecting the loss more.

http://neuralmagic.com/contact

Approximating the
Layerwise

Performance
Sensitivity

Layers within the network are not created equal in terms of how much

performance benefit can be achieved from pruning that layer. This is true not

only from the performance speedup for the individual layer, but also in terms of

the contribution to the total execution time for the model. For example, in a

standard ResNet-50 SSD model, the first four convolutional heads in a network

that has over 60 layers can take up to 40% of the total execution time. Thus, it is

important to focus pruning on those heads to improve the inference speed.

Additionally, earlier layers for most computer vision models are more memory

intensive and see less speedup from sparsity.

For the Neural Magic Inference Engine, a layer must be at least 40% sparse to see any speedup potentially. Speedups

for a layer then usually start to become interesting for performance gains around the 70% mark. Additionally, provided

that the layer is wholly bounded by compute, the relationship between sparsity and performance is exponential.

Stepping from 80% to 85% gives the same relative gain in performance as stepping from 85% to 87.5%. Finally,

grouped and depthwise convolutions are almost wholly memory bound and therefore will not see any speedup from

pruning (they are already structurally pruned).

Overall, many settings can influence how each layer responds to sparsity for performance including the layer size and

attributes, batch size used with the model, and hardware considerations such as CPU type and number of cores the

model is run on. This complexity makes it nearly impossible to approximate the effect using an equation. However,

artificially pruning the model, running it for inference, and measuring the speeds for each layer works very well. After

running the model at multiple uniform sparsity levels, the speedup for each layer can be interpolated at any sparsity

level. Additionally, the speedup in terms of contribution to the entire execution can be estimated. Generally the best

way is to execute the baseline model and then compare layerwise times at 90% sparsity for each layer (sparse time –

baseline time). After sorting these values, the highest layers should be pruned less and the lowest/more negative

layers should be pruned more.

Pruning performance sensitivity analysis for a ResNet-50 model. A lower value corresponds to more

speedup for the layer and therefore pruning has a larger effect on the overall performance for the model.

APIs as well as scripts are made available in the Neural Magic ML Tooling suite for running the measured

approximation through the Neural Magic Inference Engine for ONNX representation of models. Contact us

for directions on how to download Neural Magic ML Tooling and get your hands on on the APIs and scripts.

http://neuralmagic.com/contact

Approximating the
Layerwise

Performance
Sensitivity

As mentioned previously, selecting the same sparsity for every layer in the

model is convenient, but fails to take into account the intricacies of the neural

network architectures and generally performs poorly. Adjusting the sparsity

levels by using the layerwise loss and/or performance pruning sensitivity

analysis will significantly improve the end accuracy recovery along with the

overall performance for the model.

Redistributing the sparsity for each layer in the network to optimize for loss and/or performance as much as

possible is algorithmically possible, but can be tricky to implement generically. The Neural Magic team is

actively researching state of the art techniques using machine learning algorithms to add this capability to the

ML Tooling product offering. The goal is a fully automated solution that can derive an achievable total sparsity

for a model, redistribute the sparsity across the layers for better recovery/performance, and provide easy

configurations to control the total sparsity and the degree to optimize for performance versus loss. This

automated solution reduces the number of choices from a combinatorial explosion of each sparsity per layer to

only two: the overall sparsity and how much to target optimizing for loss and the performance. Currently, these

additions are slated for release in September.

In place of the algorithmic solution, bucketing the layers into pruning groups works nearly as well. Generally, the

following buckets in reference to pruning should be used: none, low, medium, high.

none: reserved for the layers that do not give any benefit or may hurt the model if pruned

low: reserved for the layers that give limited benefit from pruning

medium: reserved for the layers that give mediocre benefit from pruning

high: reserved for the layers that give maximal benefit from pruning

How each layer is sorted into one of the buckets depends on the end goal for the data scientist: optimize for the

best loss, optimize for the best performance, or optimize for a balance of the best loss and performance (the

recommended approach). Once the layers are sorted, though, three sparsity levels for the low, medium, and high

buckets must be chosen as hyperparameters. A good starting point is using 70%, 80%, and 90% respectively and

then honing from there.

Bucketing for
Best Loss

To bucket the pruning levels for achieving the best loss, a loss sensitivity analysis must

first be run as detailed in the Approximating the Layerwise Loss Sensitivity section. From

there, the algorithm is simple; the top 5% of layers (this number can change based on the

architecture of the model) that are most sensitive to the loss as determined by the analysis

are put in the none bucket. The remaining are sorted from most sensitive to least sensitive

and broken by thirds into the high, medium, and low buckets accordingly.

APIs as well as scripts are made available in the Neural Magic ML Tooling suite for creating buckets for the

best loss for ONNX representation of models. Contact us for directions on how to download Neural Magic ML

Tooling and get your hands on on the APIs and scripts.

https://docs.google.com/document/d/14mVnQdDfJnrC9C2s84OCpa2jRFktf23hstKhqbE-skg/edit#heading=h.wnuhjio3lw81
http://neuralmagic.com/contact

Bucketing for Best

Performance

To bucket the pruning levels for achieving the best performance, a performance

sensitivity analysis must first be run as detailed in the Approximating the Layerwise

Performance Sensitivity section. From there, the algorithm is simple; the top 5% of

layers (this number can change based on the architecture of the model) that are

least sensitive to the performance as determined by the analysis are put in the

none bucket. The remaining are sorted from least to most sensitive and broken by

thirds into the high, medium, and low buckets accordingly.

APIs as well as scripts are made available in the Neural Magic ML Tooling suite for creating buckets for the

best performance for ONNX representation of models. Contact us for directions on how to download Neural

Magic ML Tooling and get your hands on on the APIs and scripts.

https://docs.google.com/document/d/14mVnQdDfJnrC9C2s84OCpa2jRFktf23hstKhqbE-skg/edit#heading=h.a938mukhbkbt
http://neuralmagic.com/contact

Bucketing for
Balancing Loss and

Performance
To bucket the pruning levels for achieving a balance between the best loss and

performance, both a loss sensitivity analysis and a performance sensitivity analysis

must first be run. (Loss and performance sensitivity analysis are detailed in the

Approximating the Layerwise Performance Sensitivity section.) From there, sort the

layers by increasing sensitivity based on both the performance sensitivity and loss

sensitivity individually. After that, the following table can be used to determine the

group to which each layer should be assigned.

(Recommended)

APIs, scripts, as well as the model_pruning_config.py script that can be used to generate a pruning config file based on the

balanced approach, are made available in the Neural Magic ML Tooling suite for creating buckets for the best performance

for ONNX representation of models. Contact us for directions on how to download Neural Magic ML Tooling and get your

hands on on the APIs and scripts.

https://docs.google.com/document/d/14mVnQdDfJnrC9C2s84OCpa2jRFktf23hstKhqbE-skg/edit#heading=h.a938mukhbkbt
http://neuralmagic.com/contact

About Neural Magic

No-Hardware AI, or shattering the hardware barriers holding back the field of

machine learning. Neural Magic is making the power of deep learning simple,

accessible, and affordable for anyone. As a part of this next great unlock of machine

learning, data scientists will ask bigger questions, challenge norms, and unleash a

new class of AI applications that live at the edge of imagination.

Next Steps

Want to get your hands dirty by pruning ResNet-50 using the discussed approach?

Request product access and we’ll give you access to all the tools you need, as well

as a detailed “how-to” guide that you can follow.

https://neuralmagic.com/product-access/

